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Abstract—We consider stochastic dynamic decision prob-
lems where at each step two consecutive decisions must be
taken, one being what information bearing signal(s) to
transmit and the other what control action(s) to exert. For
finite-horizon problems involving first-order ARMA models
with Gaussian statistics and a quadratic cost criterion, we
show that the optimal measurement sirategy consists of
transmitting the innovation linearly at each stage, which in
turn leads to optimality of a linear control law. We then
extend this result to infinite-horizon models with discounted
costs, showing optimality of linear designs. Subsequently, we
show that these appealing results do not necessarily carry
over to higher order ARMA models, for which we first
characterize the best designs within the affine class, and then
detive instances of the problem for which there exist
non-linear designs that outperform the optimal designs
within the affine class. The paper also includes some
illustrative numerical examples on the different classes of
problems considered.

1. INTRODUCTION

1.1. Motivation :

WITH ADVANCES in large scale decentralized
systems, brought about by improved computing
and data transmitting capabilities, problems
requiring simultaneous measurement and control
are becoming increasingly commonplace. De-
centralized systems are replacing their centralized
counterparts for reasons which range from cost
effectiveness to sheer necessity due to large
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systems being more complex and less manage-
able. In such decentralized systems decisions are
often taken on the basis of information
generated by other members of the same system
and garbled by noisy communication channels.
Quite often we may identify agents with one of
two kinds of roles:

(a) agents who perform the communication
task of generating information bearing signals;

{b) agents who perform the control functions
of forming estimates, minimizing errors and
reducing costs.

For example, we may think of a space probe
and an earth station together constituting a
decentralized system, with the probe making
measurements, and then encoding and transmit-
ting them, thereby performing the communica-
tion task, and the earth station performing the
requisite control functions.

In this paper we shall be concerned with such
multi-agent stochastic decision problems (teams)
requiring simultaneous design of measurement
as well as control signals.

1.2. Problem formulation
As a prototype for the class of stochastic
decision problems alluded to above, we first
consider the stochastic system described by the
following set of scalar equations:
Xppy = Py +m; - v (la)
y=u+w (1b)
where, for some Borel measurable functions A;
and y;

w; = h(x;, y'™1) (1)
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and _
v = yy') (1d)
with .
.V':=(.Vﬂ; oo ;,Vi)-

Here (la}) and (1b) are the state and
measurement equations, respectively, v; is the
control variable and «; the information vanable
that carries information on the current and past
values of the state. The functions #; and y; are
the measurement and control strategies, respec-
tively, and are chosen such that & and v; are
second-order random variables. The initial state
Xy, the system noises m,’s and the measurement
noises w,’s are assumed to be independent,
Gaussian, with zero mean and variances o7, (the
subscript being the identifier).

The problem is to jointly design the control
and measurement pelicies so as to obtain
optimal system performance. This objective is
formalized as the minimization of a quadratic
cost functional

N
I, ¥ = B[ 3 @izt + b7+ aud)| @)

i={)

where the weighting parameters a;’s, b,’s and g,’s
are all taken to be positive, for all i. In the above
we have adopted the convention that A'=
(ho, ..., 1), ¥ =(Yo,...,v), and have im-
plicitly assumed the given relationships (1¢) and
(1d} between the policy variables and the action
variables. We now have problem P below, which
we state for future reference.

Problem P.
Minimize J(h", y")

hN ¥

subject to (1a)-(1d), where J(A", ¥y} is defined
by (2).

It is worth noting that if the measurement
policy h; is fixed to be linear in the current value
of the state, then Problem P becomes equivalent
to the so-called LLQG problem of stochastic
control, which is known to admit a unigue
optimal control policy that is linear in the best
(minimum mean square error} estimate of the
state, generated by the Kalman filter. For other
(say nonlinear) choices for hk;, however, the
optimal policy is not genmerally a certainty
equivalence controller, and even a closed form
solution may not exist. The joint design problem
formulated above is an even “harder” problem
since as a two-agent stochastic team problem it
features non-classical information (Basar and
Cruz, 1982; Witsenhausen, 1971). This follows
from the simple observation that the agent (say

A) who takes action v; has to use the information
y‘ which depends on the action variable, u'~?, of
the other agent, which is dependent on the state
x'!, which is not directly observable to agent A.

In this paper we obtain the complete solution
to Problem P above (in Section 3) by first solving
a hard constraint version of the problem (in
Section 2). We then study the infinite horizon
version (Section 4), where J in (2} is replaced by

I0%, 1) = E| 3 Blqui + et 0| @)

where Be(0,1) is the discount factor, and
a, b, q are three positive scalars. For this
problem we establish the existence of optimal
stationary policies, and provide a convergent
algorithm for the numerical evaluation of these
policies.

In Section 5 the more general problem is
discussed, where (la) is replaced by a higher
order ARMA model. The paper ends with the
concluding remarks of Section 6.

1.3. Related results

Determination of optimal measurement strat-
egies for linear stochastic systems has been the
subject of considerable previous investigations.
Athans (1972) has solved an off-line dynamic
optimization problem to select alternate sensor
measurement policies to optimize a combination
of prediction accuracy and observation cost for a
linear stochastic system. Lafortune (1985) has
also considered the problem of optimally
selecting among different costly observations for
a linear Gaussian system with quadratic costs.
Other related results are provided by Mehra
(1976), Herring and Melsa (1974}, and Meier et
al. (1967).

One commeon feature of the above investiga-
tions is that the measurement model has been
specified parametricallty, thus reducing the
problem to one of optimal selection of a set of
parameter values. As a departure from this
approach, Whittle and Rudge (1976) have con-
sidered the problem where both the measure-
ment and control sequences are simultaneously
optimized, and they have formulated it as a
dynamic two-person cooperative game with
imperfect information. In control theoretic
terms, however, their solution is unrealizable
because the actions taken at a given time depend
also on observations lying in the future.

In this paper we consider simultanecus
optimization of both the observation and the
control sequences under the further requirement
that all policies be causal. As noted in Section
1.2, in this formulation the policy k; affects the
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measurement to be used by the coniroller y;, but
the controller cannot infer all the information
available to the agent who chooses h;. Such
information  patterns have been called
nonclassical in the stochastic team literature, as
opposed to classical or quasi-classical infor-
mation patterns which include the static and
partially nested structures (Ho, 1980; Basar and
Cruz, 1982). Stochastic teams with non-classical
information have remained quite intractable
from the time they were first identified some 20
years back (Witsenhausen, 1968), where it was
shown that some of the simplest LQG
two-person teams with non-classical information
do not admit optimal linear solutions. It is,
however, not only the non-classical nature of the
information pattern, but also the structure of
the loss functional that contributes to the
difficulty, since in the absence of the product
term between the decision variables in the loss
functional, the optimal solutions may readily be
found (Bansal and Basgar, 1987a), even for some
multipath systems (Bansal and Bagar, 1987b). As
we will see in the sequel, both the finite and
infinite horizon problems formulated in Section
1.2 also belong to the class of such tractable
stochastic decision problems with non-classical
information, even though from a computational
complexity viewpoint they are NP-Complete
{Papadimitriou and Tsitsiklis, 1980).

2. THE HARD CONSTRAINT VERSION

In this section we formulate and solve a
stochastic dynamic team problem which is a
version of Problem P formulated in Section 1.2,
with hard power constraints on the u's. The
solution to this problem will then be used to
construct the solution to Problem P.

Consider Problem P1 below.

Problem P1.
Minimize J' (¥, yV)
N
subject to (1a)-(1d). where J'(2", y") is defined
by

N

T, 7= E[ 3 @it +bod)| @

i=0
and the u;'s further satisfy the power constraints
El[uf]= P}, (5)

2.1. Construction of an equivalent problem

The gist of this subsection is as follows. First
an equivalent Problem P2 is constructed from
P1 which differs only in the form of the cost
function. The cost function for P2 is in the form

of a sum of the squared differences between
state and control variables. In the transformation
from P1 to P2 the constraints represented by
(1a)-(1d) are unaltered. In a follow-up step,
Problem P3 is constructed from Problem P2
such that the structure of the cost function is left
unaltered, while the state equations are re-
defined so as to facilitate subsequent analysis.

These two transformations are presented
below as Claims 1 and 2, respectively.

Claim 1. Under the set of constraints repre-
sented by (la)-(1d), the cost function for
Problem P1, defined by (4), is identical to

N
PO, ) = B[ 3 alto,—bixy] +ex (©)

i=0

where
bi =k, .1p:/(b; + ki) (7a)
a;:=b;+k; (7b)
N

= knaia + 2 ks+1°fn, (7¢)

i =
and {k;} is a sequence defined recursively by
ki =a; + ki biplf(b; + kisy) (8)

kniy= sy

Proof. This is a standard result in stochastic LQ
control with perfect state information (see, e.g.
Bertsckas {1987) or Kumar and Varaiya (1986),
known also as ‘“‘completing the squares”, We
note that ¢y is a constant (independent of the
control sequence {v;}), and (8) is the so-called
discrete-time Riccati equation for this scalar
problem.

Claim 2. The solution to Problem P2 may be

obtained by solving the following equivalent
Problem P3.

Problem P3.
Minimize J*(h™, ¢™)
"N-?N
where
Xa=pX+m, X=X (9a)
9, = 7.(y") (9b)
Yi=u+w (%c)
;= h(5, y 1 (9d)

the u;’s satisfy the power constraint (5), and
N

TN, §N) = E[Z al(#, — b;.f,-)zl +en. (10)

i=0

Proof. The situation is depicted in Fig. 1.
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F1G. 1. Diagrammatic representation of Problem P3.

Substituting for x,, using (la), we get
vy — bixi = vy + biug — bi{pexo + mo). (11)
Similarly
vy — baxy = vy 1 bjvy + b2pyvg
= by(pi(poxe+ mo) +my) (12)
and at the ith stage we have
Vb =v;+biv_(+bip_ v+ -
+bipio1 Prve

—bi(pi1(pia(- - (Poxo+mo) - - )
+m;_y)+my). (13)
We now define the sequence {£,} through
o=x
0 =Xy (14)
f,‘.;.l:p,'f,""m(, £=0, 1,...
and let
Fii=v+biu +bipi Vi
+-ooot+bipig o put. (15)

Using these new variables, the cost function (6)
can be rewritten as

N
T, 74y = E| 3 ai(s - biy | +
", ) = E| 3 ai(s, = bigP | +en |
ﬁi = ?i(yi, Ui_ 1)

where the evolution of the £;’s is determined by
{14). Since this is a team problem, and for each
fixed A" the resulting stochastic control problem
has classical information, minimization of (16)
over (A", #¥) is equivalent to its minimization
over (h", ¢V} where $, has only ' as its
argument,
The relationship between @,'s and v,’s is given
by
o = VBT (17)

where BT is the transpose of the following

1 0 0 0 0 0

by 1 ¢ ¢ 0 0

5o bl b} 1 0- 0 0
bipap bips by 1 00

; 10
NPN-1 P DNy P2 by 1

non-singular lower triangular matrix:

We may thus write
vy = -N[ BT]—I

and we thus see that in order to obtain the
optimal solution to Pl, we may equivalently
solve the preblem in terms of ©; and % (over
¥, k™), which is precisely Problem P3. This
then leads to the following equivalence between
the solutions of Problems P1 and P3.

Lemma 1. (i) Problem Pl admits a solution if,
and only if, Probiem P3 does.

(i) If (A", y") is a solution for P1, then
(", yBT) solves P3; conversely, if (2%, $)
solves P3, then (A", #"[B™]™") is a solution for
Pl. O

2.2. An auxiliary problem

In this subsection we formulate and solve an
auxiliary problem which will play an important
role in the solution to Problem P3.

Consider the situation depicted in Fig. 2, the
problem being one of finding the signals
iy, . . ., iy subject to the power constraints (5)
50 as t0 minimize the mean square error in the
estimation of zy using y”. It is given that z,, n;,
w, i=0,1,..., are mutually independent
Gausstan random variables, each with mean zero
and variance indicated by o7, the subscript
being the identifier. Following the convention of
information theory, we let /(zy: y") denote the
mutual information between z, and y”, and call
the supremum of this quantity the capacity of the
corresponding system.

o YN *N
¥
a———E}—: & N
F
; ;l ? Y-

W
z _ N-1 - ¥
b T ] Yo~ YN-Z Yo W
b
CpEgtiy ¥
ul:]ml

D

FiG. 2. Diagrammatic representation of the auxiliary
problem.
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W,
tIlzl+n| 1}

Fii. 3. The auxiliary problem with N = 1.

We shall first solve this problem for the case
N =1 which is illustrated in Fig. 3. The proof for
arbitrary finite N will then be shown to follow a
similar line of reasoning.

It is a known result in information theory [see,
for example, Shannon (1959}, Berger (1971)],
that minimum possible distortion D* that can
result from the use of a channel is related to its
capacity by

R(DY)=C,

First consider the lower branch of Fig. 3. We
find D* for this system to be (Bansal, 1988)
030

(1+ &)’0, + a7,

(1+ &, Y0l al, (18)
(A + ay)’ol, + 03) (Pi+ 0l

Now using the expression
2
RD)=Max (0,110g (7)) (9
!

we may compute R(D*), to arrive at the
following result.

D*

Lemma 2. For the system depicted in the lower
branch of Fig. 3, the mutual information I(z;; y,)
is bounded above by
C. -1l [ (P} + 2 )(1+ ay)*d%, + 02) ]
mTELA (P ) (L Yol
(20)
0

Now, consider the general system depicted in
Fig. 3. We first note the fundamental inequality

1203 Y0, ) =z yo) + Kz v | yo). (21)
Now

Kz, 3 I)'n)‘:f(zl, Wi¥ |,Vo)

—I(w; 31| 21, yo) (22a)
=I(zi, wiy: | yo) (22b)
=I(w; | yo) (22¢)

= H(y |y} — H(n | w, y)) (22d)
= H(y, | y0) — H(y, | w) (22¢)
=H(y) - H(y | w) (226)
=I(y;; w) (22g)

AUTD 25:5-C

<4log (* %:i"%'ﬂ) (22h)

where H() is the entropy and H(-|-) the
conditional entropy. Here steps (a), (d) and (g)
follow from the definition of mutual information,
steps (c) and (e¢) are due to the Markov
property, step (b) follows because information is
always positive, step (f) is wvalid because
conditioning cannot increase entropy, and the
last step holds because, for a fixed variance, the
Gaussian random variable has the maximum
entropy (Kagan er al., 1973).

Using (20) and (22), along with (21), we arrive
at the next result.

i

Lemma 3. For the system depicted in Fig. 3

1(z13 Yo, Y1) =
. [ (P3+ 2 )(1+ay)*0% +02) Pi+ ozm]
B2 (P2 2 )+ A+ m)icias) o, |

(23)
O

Using this upper bound on I(z,, y,, y;) we can
find a lower bound on the minimum mean
square error achievable when the problem is to
estimate z, from the observations y, and y,.

We have

o’
Iz yo, Y= Lz v9) = élOgE[(Zl——lvﬂz] (24)

which implies (using (23))

10g FEH Tt a)'ol + o) PR+ ol
B (Pi+ %) + (L + m)'oia) o,

o
=1log B[z - o] (25)

ie.
El(z,—v)7]
_ 0L (PR + g + (1+ &Y oh)

26)
(P3+ 0% ) (P} + 0%) (
We next note that if we use the policy
o= ApZ
] D=0 (27)

wy = Mz, — E(21 | y0)]

with A, and A, chosen so as to satisfy the power
constraints, the minimum mean square error is
indeed achieved. Hence, we have the following
lemma.

Lemma 4. The policies given by (27) are the
policies which minimize the mean square error in
estimating z, from the pair (yy, ¥1). g

We now consider the case with arbitrary N,
depicted in Fig. 2. First, consider the problem in
the absence of the most recent observation, i.e.
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with the uppermost channel of Fig, 2 removed.
Assuming that the version of the problem with
{N —1) channels has aiready been solved, the
capacity Cy_; (i.e. maximum mutual information
between input and output) for the portion of the
system within the rectangular box CDEF is
known. We can therefore find the minimum
achievable distortion for a memoryless Gaussian
source with variance o, when only the portion
within the box ABCD is in use, by computing
the conditional estimate of z, given z,_,, and
transmitting this optimally. Using this minimum
achievable distortion we can compute an upper
bound for I{zy; ™) as follows (where z) is the
sequence zy,, . . . , 2y}

1 . , o 0%
* l- - E s v; 2 - Zpr My
E=-T R (e = )
1+ ay)ol
( aN) UzN e_2C~_| (28)

(1+ an)’ol, + o2,

i.e.

(1+ “N)ZUL;N + C'an ]
oL, + (1 + ay)’o?, e 2w [
(29)

Izn;y¥ ") =4 log [

Furthermore, we can use a series of inequalities
as in (22) to show that

Pi+ o,
Hawiy |y =3log =572 (30)

Now since
Hzns y™) = Hzps y¥ )+ Izniyw | V7Y (31)

we get
(zo; y™)

(1+ay)’o},+0;, Pi+a,
1 N N ‘N
=2log [afW +(1+ ay)o e ¥ o2 ]

Wi

= Cy G2)
and we have the following lemma,
Lemma 5. The mutual information I(zy;y") is

bounded above by Cy, which is the last step of
the recursion:

Pi+
Co=14log (07"2"") (33a)
Oy
and fori=1,... , N
(1+&)Yol+02, Pl+ol,
—1
Ci=ilog (oﬁ' +(1+aPole X o )

(33b)

0

Next, let A; denote the minimum achievable

mean square error when z; is estimated using y',
1.e. {(using (24))

A= 0576, (34)
Then, we have
__Tu0m,
A,= P+ Uzw (35a)
and fori=1,..., N
__an  ((L+a)d o
A= i vai ( o A+ = af,l). (35b)

We shall next show that this lower bound is tight
and may be achieved by using the policies

Uo = AoZo (36a)
and fori=1,..., N
u; = Alz, — E(z \ y ). (36b)

Here the A;’s are chosen so as to meet the given
power constraints with equality. Since

zio1=(1+ @)z +n; (37
we may equivalently write
%= Pio1Zio1+ My (38)

where

~ o;

Bioii=(1+ ) e ' (39)
and m;_, is a Gaussian random variable which is
independent of z;_, and has variance

T 2
o.azn,-_l - 0'3._[ an,- (40)
With the policies chosen as in (36), we have
Yo= Aozo + Wy (41a)

and fori=1,..., N
Yi=Alz — E(z I }'i_l)) +w; {41b)

Let Z, denote the mean square error in the
estimation of z; from y* when the communication
strategies are chosen as in (36), i.e.

= E[(z — E(z | y))3
We then have, using (35)

=l 42
0_0.50 (42a)
andfori=1,..., N

PZ
z i

2 — 42b

A; 5 = (42b)

(1+a’,) 04 Z,-_1+ oﬁf

a2

&1 L1

Further, by our specific choice of the policy,
(z—E(z|y™") is a zero mean Gaussian
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random variable, and therefore
E[(z-E@z|y™

- Bla— B |y ) 9= i"%“% (43)
where |
si:= E[(z — E(z; |y~ 1))
=(1+ &)? % .+ i ok, (44)

e g4 a2

1—1 -1

Also, E(E(z|y"")|y)=0 by our choice of
policy, since y; is independent of y*~!. Therefore
the expression on the left-hand side of (43)
becomes

E[(z - E(z | y - E(z | J’i))z}
=E((z - E(z | y)]=3,

and we obtain the recursion (for i=1,..., N)
on [+ a&)o o,
P Pt Oi. [ oﬁii, .+ 03_, o?,:l (45a)
with the initial condition
o’ o2
So= R 4
=PI+ o2, (45b)

The recursion for the ;s is therefore identical
to the recursion for the A,s (given by (35)),
which denote the minimum mean square error
achievabie. This shows that the lower bound on
error is indeed tight, which then leads to the
following theorem.

Theorem 1.

(a) The policies given by (36) minimize the
mean square error incurred in estimating zy
from y" for the system depicted in Fig. 2, where
the 4;’s are defined by (42) using the X,’s defined
by (45).

(b) The minimum mean square error is given
by the last step of the recursion (45) or
equivalently by the last step of the recursion
(35). m|

2.3. Solutions to Problems P3 and P1
We now return to Problem P3 defined in
Section 2.1, where the policies

u; = hy(%;, )’f_l)
and
U=y f)
are to be chosen in order to minimize
N

=[S el - bl +en  (46)

i=0

under the constraints depicted in Fig. 1.

We first consider the minimization of the Nth
term in the expression for J, which is

Elay(vw - b'NfN)Z]
the optimization problem being equivalent to
minimizing

Elaybi(ty— En)]
where

Cr'lt
zZ™z

i

i.e. the problem is one of forming the best
estimate of x, under the mean square distortion
criterion. We now show that the situations
depicted in Figs 1 and 2 are identical except for
nemenclature. To show this equivalence we note
thatfori=1,... , N

Zi = (1 + a’,-)z,- + n; (47)
which implies
a;
z=(1+a) ;j’” Zi1tm;_, (48)

where the m;’s are zero mean Gaussian random
variables each with variance

T
O%n, = —(;2'_ O:len-l' (49)

We therefore have

o2
~ fori=1,...,.N

Zi—y

Pia=(1+a)

and by defining o2, = o7, we can complete the
correspondence between the variables £,'s and
z'sfori=0,1,..., N.

The solution of the problem of minimizing the
mean square error in estimating £y from y" may
therefore be obtained as in Section 2.2,

(a) The minimum mean square error in
estimating x; using y' is given by A;, where A/s
satisfy the recursion (fori=1,..., N)

as
A= m (P& +00,.)  (50a)
with the initial condition
0.12‘002%
Ap= o (50b)
(b) The optimal communication strategies are
1y = hg(£o) = Aoy (51a)

andfori=1,..., N
w=h! &,y = L% - E% | ") (51b)

where the A;,’s satisfy the recursion (for
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i=1, . N)
P?
) L S—
l prz-lAr’—l + Ofn,—_, (522)
with the initial condition
PZ
M= = (52b)

(the A,’s being as defined by (54)).
(c) The optimal choice for the §,s is
=97 (y) =biE(%: | ¥) (33)
where the E(X, | y')’s satisfy the recursion (for
i=1,...,
E(% | y) = pi E(Eiy | y7Y)

F;
+ P2y va (P2 Ay + Oﬁz,-_l)m ;  (54a)

with the initial condition

- Pyog,

E(% | Yo) = Pﬁﬁ-:c)é]o

(the A,’s being as defined in (50)).

We finally note that the policies which

minimize the mean square error in the

estimation of %, given y’ for i=0,... N—-1,

are identical to the corresponding policies used

in the estimation of i, given y~, and we
therefore have the following theorem.

(54b)

Theorem 2.

(a) The optimal policies »; and ¥, for Problem
P3 are given by (51) and (53), respectively, using
the A;'s and A;’s as defined by (52) and (50},
respectively.

(b) The minimum value of the cost function
for Problem P3 is

N
= 2 a:b;zAi + Cpa. O
=0

We now turn to the original Problem P1
formulated in Section 2.1. Taking the difference

ﬁi U1

—_— i1 55

b, 59)
and using (53), (54) and (15), we find that
v; ,
b—:=(pl 1 b! l)b: s

P, 1”2
P s (P21 + 00 )y (56)

which implies that the optimal control policies
for the original problem are

v =yr(y)=biE(x: |y)2bi%  (57)
where £,:= E(x, | y') satisfies the recursion (for

i=1...,N)
£i=(pi_1~ bi_)Ainy

Pz 0_2 (PF1A + m, ,)my; {58a)

with the initial condition
Fyo,,
[ L
" P+ ol

the A,’s being as defined in (50),
We therefore have the following theorem.

(58b)

Theorem 3.

(a) The optimal policies {h;} and {y;}} for
Problem P1 are given by (51) and (57),
respectively, using the A,;’s and A,’s as defined by
{52) and (50), respectively.

(b) The minimum value of the cost function
for Problem Plis

N

J'*:z a;b:zA‘-'l‘CN. O

An illustration

Consider the case with N=2, p,= 02 =02, =
0., =P}=1.0 and the objective being to
minimize the cost functional

IO ) = 3, (s + 00

Using Claim 1, we get the equivalent cost
functional

2

> aj(v, —bix) +c;
Fou(}
where
ap=13/5, ai=5/2, a;=2
by=8/13, b1=3/5, by=1/2
and

¢, = 613/130.

Using Theorem 3, we obtain the optimal designs
for the problem to be

ul=xg; ul=(V2/3))x,— E(x,|y");
u3 = (V@/T))(x2— R(x2 | y"))

and

where
2= é}’o;
21 =55y + 1
=tntin+ %}’2-
The minimum cost is 6.1852.
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3. THE SOFT CONSTRAINT VERSION—FINITE
HORIZON CASE

In this section we use the solution to the hard
constraint version (obtained in Section 2} to
construct the solution to the original problem P.
Let J» denote the infimum of J under the hard
power constraints

Jp = Inf J(RY, ¥M). (59)

R™. N EfR 2= P2

We then have the following series of equalities
and inequalities:

L
Jp= P2+ Inf
d E}q, T N EA=PLY,

E[i (a;(v.-—b;x,-)z)]

i={
N

N

p? 2)
N
2 P

=

24 2 aib’A, (60)
=

v

Min [Z q: P2+ alb*A, ]
P,-z =0 Lixp

N

= z q; P$2+a:bsz*

i=0
where the A;’s are defined in (50) and A}’s are
defined recursively likewise, with P, replaced by
P!. In order to find the optimal power levels
(P"z’s), we can solve the following problem:

Mm 2 q:P? +ajb’A, (61)
----- Py i=0

which is a non-linear optimal control problem,
the solution to which is given by the following
dynamic program (with p_,:=1 and o5,_,:=0).
Here Wi(A) is the “optimum cost to go” given
that the system is at state A at stage §

Wy =0

0.2
‘Wf(A)=Ng“ [‘IJP%‘*":b'Z 02 (pF_10
+o%":—1)
az,
+w,-+,[P2 (At )] @

The optimal value of the cost is

PR) = Woloy,).  (63)

We next show that a solution to the above
problem always exists. If we define

a;b*a?,
Pl + 0l

O%v.-(p?—lA + Ufn,_.)
P+ 0%

f(A, PY:=q,P*+ (PP A+ 05 )

W ) 69

then
Wi(A)= mp'tnf(A, P).

Note that W; is a continuous function of its
argument if W, is, since the continuity of W,
implies continuity of £ From the continuity of
Wysy (which was defined to be zero), the
continuity of W, follows for all i, We also note
that as P?—> o, f(A, P)— = also, and since
P?=0, the search for P}? can be confined to a
compact set over which a continuous function
always admits a minimum.

The dynamic program (62) can therefore be
solved, vielding values for

* * *®
P P ..., PN

and we have the following theorem.

Theorem 4. Consider the problem
Minimize J(h", y")
PR

subject to (1a)-(1d), where J(h”, y™) is defined
by (2).

(a) The optimal policies {h}} and {y}} are
given by (51) and (57), respectively, using A;’s
and A;s as defined by (50) and (52), with the
solution to the dynamic program (62) providing
the optimum power levels, i.e.

P}=P* for i=0,...,N.
(b) The optimal cost is given by

N
Wo(o2) = 2, P+ ajb]?Al. ]
=0

An illustration

The optimal power levels depend critically on
the power penalties (g,’s). If we assume N=1
and the following parameter values:

0,=10, 0%=10, o¢%=10, 0n=10
g0=20, g,=40, p;=035  a;=10
b4=10, aj=20, 1=1.0

then the optimal value of the cost is 3.5 which is
attained by Pj= P]=0.0. If the power penalty
qo is changed to 0.25 with all other parameters
remaining the same, we can achieve an optimal
cost of 2.9747, which is attained by using
P3=1.4495 and P$=0.0. If the power penalty
g, is also changed to 0.25, then the optimal cost
is further reduced to 1.9968 which is attained
by P2=1.1609 and P}=1.9876. It is notable
that the optimal solution satisfies a threshold
property, and the number of channels in use
depends on the relative magnitudes of the
weighting terms.
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4. THE INFINITE HORIZON PROBLEM
We now turn to the analysis of the infinite
horizon problem. For this case the cost may be
Tewritten as

J=2 qful+ 2, al(0; - bix.)
i={ i=0
where
al— Bib+kB)=a'B
b Bl =y
a

and k is determined as the positive root of the
equation

(k - a)(kB + b) = kbBp? 65)
ie.
= % (V((b - bBp” — aB)’ + 4abp)
— (b—bBp*—ap)). (66)

Thus, an infinite horizon version of the originally
formulated problem, with discounted cost, may
be solved by solving a problem of the form P”,
which is given next.

Problem P~.
Minimize J(h*, y*) = E [ 2 (qui+a(v,— x,-)z)ﬁ']
Lt i=0

where g, g are given positive constants, f§ is the
given discount factor (0 <g <1) and

u; = hy(x;, J"_l (67a)
= yd{y'). (67b)
a

We treat the infinite horizon problem as a limit
of the finite horizon case with horizon length N,
as N— o, Each such finite horizon problem is
identical with the one considered in Section 3,
with the only exception that now all parameter
values are constants and there is an additional
discount factor B. The counterpart of the
Dynamic Programming recursion (62) is

Wy 1(A)=0 (68a)

Wi(A) = ing [qu + (p*A+ o)

ac’,
P+ 0
+ ﬁWk+1(ﬁ (p?A + 0,2,,))] for k= N.

(68b)

We now study, in a series of lemmata, properties
of Wi(A), and in particular its asymptotic
behavior.

Lemma 6. W,(A) is strictly increasing for
decreasing &, for all A>0, ie. Wy(A)>
We(A) forall k=N,

Proof. Clearly the lemma is true for k=N,
since Wy,; =0 and W,(A) is necessarily larger
than zero for all A. We now note the following
sequence of equalities and inequalities;

We(A) — Wen(A)
= Min [q}ﬂ

PI=D

aas, )
z_'_ai’(PA‘Fofn)

+ (s (08 + 03|

— Min [ql’”2

P20

oz
Pza+ 0_2 (p2A+ o.!zn)
T (2
+BWeo P (0a+a2)]

=qP? +

Pz 02(2A+oi,)

)

pry 20
gb +P2+o%,

ﬂwk-a-z(szvoi (o°A+ Ufn))

(P*A +02)

oZ(p*A + o2,
=ﬁ(Wk+t“’M+2)( (gz+02 ))
where P? is chosen as the argument of the first
minimization. (In case of non-unique solutions,
any one of the minimizing solutions may be
chosen.)

Thus if W, ,(A) is larger than W ,,(A), then
Wi(A) is larger than W, . (A). Since Wy(A) is
known to be larger than W, ,(A), the proof is
complete. a

Lemma 7. W,(A) is an increasing function of
A{W,(A)T A} forall k=N,

Proof. We prove this by induction. First con-
sider the case with k = N. We have

Wi(A) = Pl}/ziilé I:qP2 + p’A + 0,2,,)].

_ao,
el

There are only two possible cases, either PY =0
or P¥>0. If P¥ =0, then Wy(A)=a(p*A +
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a%). If P¥" > 0, which requires

_a0pPAtan) o
(P +0l)
Le.
2% _ ao?v(PzA + ofn) vz _
P* = [———q ] ., (69)
and we get

Wy(A) =22"¢0,(p°A + 02)"% —qd%. (70)

Thus the lemma is true for X = N.
Now, if W, ,,(A) 1 A, then for each P?

Wk+l(P2+ (Pzﬂ"'az))TA
since
o
st (PA+ )T A.
Also
2 aoﬁ,(pzA + O'fn)
(aP+ P4 o2 J1a

and thus both terms in the expression to be
minimized to obtain W, {A) are increasing in A
for all P2 Therefore, W,(A) 1 A. O

Lemma 8. For each A>0, W.(A) is bounded
above for all k£, by an affine function of A, i.e.

0<W(A)=Q, A+ Q,,. (71}

Proof. The proof is by induction, using the
observation that since W,(A) is given by the
minimum over P2, an upper bound is given by
the value that the expression to be minimized
attains when P? is fixed arbitrarily at zero.

Thus Wy(A)=a(p’A+o0%) and we may
choose Q, y =ap®, Q, y =aoc>,

Now consider the following sequence of
equalities and inequalities:

We(8) =Min | P + =77 (p°A + %)

0.7.

+ B (%8 + 2 |

P2

=Min [qu + (p*A + a%)
P

2+ o.i’
+ BWeei (07 + 03|

<a(p’A + 02) + fW,.\(p°A + 07)
=a(p’A + afu) + ﬂ(gl,k+1(pzA + oazn)
+ 825 041)
= (ap® + BQy k1P + acl, + Q) 41100,
+ BQ; 1
2Q ,A+Q,,.

Therefore, the lemma is proved with the
sequences {€2 .} and {Q,,} defined recursively
by

Q,n= aPZ: Q= aﬂfu
Q) . =ap®+ Bp°Qy
Q, = ach+ BocQ s+ By ki O

Note that since the optimal measurement
policy for the finite horizon problem is linear,
the stationary limiting policy is given by

Ba(x,, Y )= AMx, — E(x, [ y"Y))  (T2)
where

2 Ll
A= 7
pZ A* + afn ( 3)
with P and A* being obtained through the
stationary solution of the optimum control
problem as N— .
For each N, denote the solution by {P3 }¥,
k << N. We then expect that
P¥ = lim {PL}¥
N—pon
for every finite k.

To establish the existence of this limit, we
recall that W,(A) is strictly increasing for
decreasing k < N (Lemma 6) and further that it
is bounded above by an affine function (Lemma
8). This last property follows since both &, ; and
Q, , are bounded in retrograde time

acy,
1-/0-p8)
(74)

a 2
Q. < (1 ‘;pz) and Q,,<

Hence

lim W,(A) = W(A)

where the limiting function satisfics

aoZ(p’A + d2)

— NG 2
W(A)—l\&n[qP o

+ ﬁW(sz"ai (9°A + af,,))] (75)

Denote the minimizing solution here by P*(A).
Let PZ= P%(A) be a minimizing solution of the
right-hand side of (68b) (which always exists, as
shown in Section 3), and let {A}}{_, be the
trajectory sequence defined recursively by

S-(mata) @

o

A= ——
CTPar )P

*Al-1+0n). (76b)
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Finally, let
"= P}(0?) (77a)
Pk = PYAL). (77b)

Now nofe that since p®<1, equation (76b)
describes a stable system with P2 replaced by P?,
and hence A, — A* where A* solves

. o,
NZTOTY: (p’A*+02).  (78)
Let
P¥ = PYAY), (79)

Then we have the following solution to the
infinite horizon problem.

Theorem 5. With N—w, the joint design
problem under consideration admits the optimal
stationary measurement policies

ha(xn, y" 1) = A*(x, ~ Elx, [ y™),

n=01,... (80)

where
*2 _ P i
p*A* + o,

with A* and P¥ given by (78) and (79). The
optimal stationary control policies are also
linear, and are given by

kBo_,
b+kf Enr

where k is defined by (66) and £, := E[x, | y"] by
(58) with all quantities replaced by their
time-invariant counterparts, also in view of (78)
and (79). 0O

v, =v*(£,)= n=0,1,... (81)

To numerically compute the optimal station-
ary policies, we start with Ay=0 and run the
following algorithm:

Algorithm A.
(1) Compute

02 (p*Ay + 02)
* : 2z aag,, k Lol
(P =arg iy [ a7 + S
+ B(gP* +ady)
1-g I
(2) Compute the new value, Agyq, by
&
A= P5y P+ o (P*Ag + 0.

(3) Go to step {1), and iterate.

The optimal cest is then given by

aaz(pzA‘ +02))/(1 — ).

w(ar) = (ah + TR

Claim 3. Algorithm A always converges. O

Proof. First note that (PZ)*, found from step (1)
of the algorithm, satisfies

a0, (220

q1!2

(P)*
X 0,(p*Ax + o2) - 3|
which implies that if A, ,=

Py

Now, given A, > A,_,, we have

Ay, then (P ) =

Ay — A= PAL+ 02)

o3,
(PO*+ a%,(
o, 2
EGEIETA
=B
(PO +a%
a2
R
%,
= mp (A —Ayly)
=10,

%)
Ax+ ar)

2Ai_q+ 02)

Therefore, since A, > A,, it follows that the
A.’s form a monotone increasing sequence.
Further, to show that the A.’s are bounded
above, we consider the sequence

Ie=0
Tesr =0Ty + 02,
and note that if I';, = A, we have
Tes1=pTi + 05 = p*Ay + 02,
Zm (0*Ac + 05) = Mgy

ie. if Ty=A,, then I't,,=A;,,. But Ij=
Ay(=0), and the sequence I, is bounded above
by o

(1-p%
Therefore, the monotone sequence A, is also

bounded above, and the convergence of the
algorithm follows.

5. HIGHER ORDER ARMA MODELS

In Section 3 we studied a stochastic dynamic
system involving a first-order ARMA model,
with the current state directly correlated only
with the immediately preceding state. In case we
allow this correlation to extend to j previous
stages, we obtain a jth order ARMA model.
Accordingly, let us suppose that the stochastic



L4

Optimum measurement and control strategies 691

system is specified by the following equation;
i=1
Xiw = kZﬂ Pi1,i—iXi—g + 1 — Y (82)
along with (1b)-(1d), where we have the same
statistical description for the random quantities
Xo, m;, and w;, and take po,; =0 for j < 0.

As seen in Sections 2 and 3, we may formulate
both hard and soft constraint versions of the
above problem, by adopting appropriate cost
criteria. The soft constraint version is given
below as Problem PS°.

Problem PS°.

Mlmmlze E[Z Gt + a1 x3 01 + b7 ]

i=0

subject to (82), and {1b)-(1d).

Using completion of squares and redefinition
of the v,'s as ©,’s (as in the case of the first-order
ARMA model) we can obtain the equivalent
problem PS below.

Problem PS.
N f— 2
Minimize E[E q,:u,2 + a;(ﬁ; - E b;.;_kf;_k) ]
LA i=0 k=0

subject to (1b)-(1d), with x; replaced by £
where the latter is generated by
j—1

Xipg = 2 Pivri-iKiog +my
k=0

and v, replaced by #;. The precise expressicns
for the b, ;_,’s and #,’s are given in Bansal (1988)
where the details of the justification for this
reformulation may also be found.

We now turn to analyzing these reformulated
stochastic team problems.

5.1. Optimality over the affine class

In this subsection we show that if we confine
the design to the affine class, then the optimal
measurement strategies use a linear transform-
ation on the innovation process.

Theorem 6. Consider the general formulation of
Problem PS with k; restricted to the class

w; = hi(%, y7) = L%, y7')
where L, is a general affine mapping. Then one
may, without loss of generality, confine to

optimizing over the class of measurement
policies which satisfy the structural restriction

H; = j'r{xi - E(fi l yi_l)]' (83)

Thus it is sufficient to optimize over the class of

policies which use a linear transformation on the
innovation in %,
Proof. Note that over the affine class we may
write

=L,y ) =d;+p,
with

II, = ;t,‘.(f‘- - E(f, | yi_l))

= Li(y"™")
where L/ is an arbitrary affine mapping, and &,
and p; are uncorrelated. Thus we have

and

min J(A", ")
N

N j=1
= E[Z (‘I:‘u? + ar‘(E(E Cri—iKiok | )’i)
k=

=0
j—t 2
- Z C;f—kfi-k) )]
N i—1
I:Z (qeﬁ?+qsp?+ af(E(Z Cii—k¥ik Iy‘)
=0 k=0

S )

N =l _
[Z uf + ﬂi(E(?_:O Ciim iRk | )")
i=

S}

We now note that the sigma field generated by 7
is the same as the sigma field generated by y*
where

Vimdtw=y,—p,;
since p, is y"~! measurable.
Hence

min J(AY, )
i
N i—1
= E[Z (‘bﬁ? + “s(E( 2 Cii—kcKi—k | _)7‘)

i} k=0

i-1 2
- 2 Ci.i—kf:—k) )]

k=0

and therefore the cost functional may be

optimized under the structural constraint
(83). 0O

The optimal strategies within the affine class for
problems involving higher order ARMA models
may now be found as for the first-order problem,
which involves the solution of a sequential
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FiG. 4. Schematics for Problem P,.

optimization problem. Since the procedure is the
same as in the first-order problem, we do not
pursue it any further here.

5.2. Nongptimality of linear laws

Here we show that for one of the simplest
team problems of the type above, involving an
ARMA model of order 2, the optimum linear
solution may be outperformed by an appropri-
ately chosen non-tinear policy.

We first restrict our attention to the following
stochastic team Problem P,, a schematic
representation of which is provided in Fig. 4.

Problem P,.
M}ll:nhr:l:ze E[(x — v)?]
where
xn=x+mn {84)
wy = hy(x) (85)
n=u+w (86)
Uy = haxy, y1) (87)
V2=t + Wy (88)
v=y(y1, ») (89)
subject to the hard power constraints
E[ul) < P? (90a)
E[u}) =P (90b)

O

Note that if the problem involved estimating
x, at the decoder (instead of x), then we would
have had the two-stage version of a problem
involving a first-order ARMA model as studied
in Section 2, for which the optimal solutions
have been shown to be linear.

We now show that Problem P, above does not,
in general, admit an optimal linear solution. This
is done by constructing an instance of the
problem where the optimal strategies in the
linear class are outperformed by appropriately
chosen non-linear strategies.

In order to see why one might suspect
nonoptimality of affine laws, consider the above

FiG. 5. Schematics for Problem P.,

problem with ¢, = 0. We then have Problem P,
below which is represented schematically in Fig.
5, and for which the hard power constraint on u,
is immaterial since there is no noise to combat.

Problem P,

Minimize E[(x — v)?]
subject to (84)—(87), and (89), along with the
restriction:

Y2 = Us. 91)
O
Note that since

= '}’()’1, )’2)
where

Yo =ty = holxy, 1)
we may equivalently write

v =y(y1, ha{x(, 1)) (92a)
=7'(y, x1) (92b)

and thus Problem P, may equivalently be
represented as in Fig. 6.

We thus obtain a problem of simultaneously
designing encoding and decoding policies with
side information at the decoder, for which
non-linear strategies which outperform the
optimal linear strategies do exist.

Since linear policies are not optimal for
Problem P, with ¢%, =0, they may continue to
be suboptimal for small enough values of o7,
We show next that this is precisely the case. In
particular, if we consider the optimal linear

ny

¥y

Wi

FiG. 6. Equivalent representation for Problem P..
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design for Problem P,, using

w= hl(x) = llx
uy = ho(x1, y1) = Aglx1 — E(x1 | y1)]

where A, and A, are chosen to meet the hard
power constraints with equality (this being the
optimal choice in the affine class, as shown in
Section 5.1), we have

Mos
E(x, |}’1) =Pf _t_ Uzwl b4l (93)
and
o Ao?
xlnE(x1|y1)=n1+P%+m0il _P%":'Ozwlw:l
(94)
which implies that
aﬁ,‘ Mo?
“2“2[P3+a§,1x‘1°§+ = “’*”‘]
with
2 PY(Pi+0%)

T RR + (Pt

The mean square error in estimating x from the
simultaneous observation of y, and y, then is

L
(Pi+ oL XPi+ )
Plon, ]
(s, + 0Za% /(Pi+ o )]
Considering the situation with o02=100.0,
02,=099, o2,=10, 0%, =001, P;=850423
and PZ=100.99, we find that the optimal linear

policy yields a cost of 0.53467.
We next consider the design

E[(x— E(x |y, y))] =

X [02,‘.: + (95)

hix)=x+ esgnx; hyx)=x,
and
(n+y.—€)/2 ify,=0
(letting € = —1.0 we obtain E[u}] = 85.0423 and
E(42) = 100.99).
Now

Yy y) = {

»=xtntw,=x+w,
where

ws ~ N(O, 1).

If we calculate the mean square error under the
above policy, we find that the non-linear policy
vields a cost of 0.53172, and hence is superior to
the linear optimal policy.

We now return to the problem of showing
nonoptimality of linear laws for at least some
instances of higher order ARMA wmodels.
Consider the following second-order model with

| h_|
by () Y
Yo N Wy
e e Ay I
¥a w)
"o O

o

Fig. 7. Schematics for a second-order model with feedback.

feedback, illustrated in Fig. 7. We have

X;= PpXy+ PrXo + 11,
X3 = ProXet+ mg

and x4, mp and m, are given independent, zero
mean, Gaussian random variables.

The problem is to minimize E[(v;— x,)%)
under the schematics of Fig. 7, with

v2 = ¥(¥0, Y1, ¥2)-

Let us now suppose that o7, is arbitrarily large,
essentially making the third channel redundant,
and therefore

E(x, | Yo, Y1, ¥2) = E(x; | Yo, Y1)
Further suppose that

pn=0, pn=1 04,=0, pp=1

which imply
Xz =Xg

x1=x0+m1

and we obtain the problem depicted in Fig. 8.
We thus obtain a problem of the type P,
discussed earlier in this section, for which there
are instances when linear strategies are not
optimal. Hence we see that there are instances
of the general problem (described by second-
order ARMA processes) for which designs that
are optimal in the affine class are nonoptimal in
the general class of policies.

FiG. 8. The second-order ARMA model under the given
restrictions.
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6. CONCLUSION

In this paper we have considered stochastic
dynamic team problems where at each step two
consecutive decisions were to be taken, one
being what information-bearing signal to trans-
mit, and the other being what control action to
exert. Such problems arise in the simultaneous
optimization of both the observation and the
control sequences in stochastic systems. We
solved the problem completely for first-order
systems under quadratic cost criteria, This was
done by first constructing an equivalent problem
having a cost function consisting of a sum of
squared differences, and then solving this
equivalent problem using some bounds from
information theory. For cases with hard power
constraints, it was shown that the optimal
measurement strategy is to linearly amplify the
innovation at each stage to the maximum
permissible power level. For cases with soft
power constraints the structure of the solution
was found to be similar, with the optimal power
levels being found via solving a non-linear
optimal control problem, this in turn being done
by using a dynamic program. The results were
then extended to cases with an infinite time
horizon and a discounted cost functional, and
the existence of optimal stationary policies for
these problems was established.

We then considered stochastic dynamic deci-
sion problems requiring simultaneous optimiz-
ation of both the observation and the control
sequences for second- and higher order systems
under quadratic cost criteria. We considered
optimality over the affine class for problems
involving a general jth order model, and showed
that within this class the optimal measurement
strategy for the hard constraint version consists
of transmitting the innovation linearly at each
stage, leading to linear control laws. We then
showed that for some of the simplest classes of
such problems, involving second-order ARMA
models, strategies which are optimal in the linear
class may be outperformed by appropriately
chosen non-linear strategies.

For related work in the continuous time, we
should mention that the hard constraint version
formulated in Section 2 was studied earlier in
Liptser and Shiryayev (1976), where the
optimality of linear encoding strategies was
established. It seems that, using that result one
may be able to show the optimality of innovation
strategies for the continuous time counterpart of
Problem P. However, extensions of this result to
the infinite horizon case in the continuous time,
and to higher order dynamics, are not immediate
and are currently under study.
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