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STOCHASTIC INCENTIVE PROBLEMS WITH PARTIAL DYNAMIC 
INFORMATION AND MULTIPLE LEVELS OF HIERARCHY* 
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We formulate and solve a class of three-agent incentive decision problems with strict hierarchy 
and decentralized information. The agent at the top of the hierarchy (leader) observes a random 
linear combination of the decisions of the other two agents and constructs his policy based on 
this, as well as some static information. We show that for general concave utility functions, and 
under some reasonable conditions on the random variables involved, the leader has an optimal 
incentive policy which is linear in the partial dynamic measurement and which induces the 
desired behavior on the two followers. 

1. Introduction 

We consider, in this paper, a class of stochastic incentive decision 
problems with three agents, a strict hierarchy and decentralized information. 
The information structure is such that the two agents at the upper level of 
the decision hierarchy receive static as well as dynamic information, whereas 
the agent at the bottom of the hierarchy receives only static information on 
the random variable characterizing the unknown state of the environment. 
The dynamic information of the agent at the top of the decision hierarchy 
does not involve separate observations of the actions of the other two agents, 
but rather a single dynamic measurement which depends on both action 
variables. Then, the question we raise in the paper is, given that the leader 
has some ‘ideal’ point in the product decision space (one that is obtained, for 
example, by global maximization of his expected utility function), whether he 
can construct an incentive policy (using his partial dynamic information) 
which induces the right behavior on the followers, to lead to the desired goal. 
We are particularly interested in obtaining smooth incentive policies and not 
(discontinuous) threat policies. We will ask this question also for the case 
when the leader does not have any direct influence on the utility function of 
the agent at the bottom of the hierarchy. 

The stochastic framework adopted in the paper enables us to derive some 
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strong results for this class of models. In particular, we will show that for 
general concave utility functions, and under some reasonable conditions on 
the random variables involved, there exists an optimal incentive policy for 
the leader, linear in the partial dynamic measurement, which induces the 
desired behavior on the two followers. Also, there exist some additional 
degrees of freedom in the leader’s incentive policy, which can be used to 
further desensitize its performance to parametric changes in the utility 
functions of the other agents. These results constitute extensions of some of 
our earlier work on the topic [such as Bagar (1984) Cansever and Bagar 
(1985)] to multiple hierarchies. 

The organization of the paper is as follows: In section 2, we provide a 
precise mathematical formulation for the problem by concentrating on the 
case of scalar random variables. In section 3, we present our main result and 
discuss the implications of the various conditions involved. Section 4 includes 
an illustrative example which involves a duopolistic market with government 
(price) coordination and regulation. Finally, section 5 introduces some 
extensions to the basic model, such as vector-valued variables and multiple 
agents at each level, and outlines the results to be expected in each case. 

2. Problem formulation 

The basic ingredients of the problem we address in this paper are the 
following: There are three decision makers (DM’s), where one of them, DA44 
referred to as ‘leader’, declares an incentive policy at the start of the decision 
process. The other two decision markers, DMl and DMZ, called the 
‘followers’, act un %r this incentive policy according to a given protocol. 
More specifically, we LVI;: ‘;ssume a strict hierarchy under which DM 1 first 
decides on his policy (which could also be called an incentive policy in this 
remaining portion of the game), and announces it as enforcement on DM2 
who in turn acts optimally (under his own utility function). 

Let ai denote the action (decision) variable of DMi, taking values in the 
action (decision) space Ai, i=O, 1,2. Let x be a random variable taking values 
in a set X and defined on a given probability space which is common to all 
three DM’s. This random variable denotes the ‘payoff relevant’ portion [a la 
Marschak (1963)] of the unknown state of nature. DMI observes the value of 
a (related) random variable y, and DM2 observes the value of another 
random variable yZ, which are defined on the common probability space and 
take values in Y, and Y,, respectively. Furthermore, DMO observes the value 
of a fourth random variable z, defined on the same probability space and 
taking values in a set 2; this measurement will be called the private 
information of the leader, since it is not shared by the other DM’s. It is 
assumed that DMO has also access to the observed values of y, and y,, and 
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DMl has access to y, in addition to y,. To make the problem non-trivial, we 

consider only the case when all the three random variables, y,, y, and z, are 
correlated with x. 

The observation variables y,, y,, z introduced above all provide static 
information, in the sense that they do not depend on the actions of the 
DM’s. The dynamic information, which is an essential ingredient of incentive 
decision problems, is specified as follows for the problem under consider- 
ation. Let k, and k, be two non-zero random variables defined on the 
common probability space and taking values on the real line. These are also 
private information to the leader, and as a special case they could be taken 
as functions of z. They are also allowed to be correlated with y, and y,, and 
the only restriction we impose on their selection is that when conditioned on 
(z, y,, y2) they be independent of x. In terms of these two variables, DMU 
makes the dynamic measurement 

a=k,a, +k,a,, (2.1) 

which is a (random) linear combination of the followers’ actions. This partial 
dynamic information may, for example, correspond to the case where the 
leader observes the ‘state’ of the underlying system which evolves according 
to an equation linear in the followers’ actions, but he cannot necessarily 
observe these actions separately. We also point to one implicit assumption 
made in writing (2.1), which is that the action spaces of the two followers are 
compatible so that the summation makes sense; this will indeed be the case 
in our formulation. Now, to complete the specification of the dynamic 
information, and consistent with the hierarchical mode of play, we further 
assume that the first follower, DM 1, has access to the action variable of the 
second follower, DM2, and hence can base his (incentive) policy on a*, as 
well as the static information (yr, y2). Finally, in order to convey the main 
ideas succinctly, we will take the decision spaces A,, A,, A,, as well as the 
measurement spaces Y,, Y2, Z as copies of the real line, which we henceforth 
denote by R. 

Admissible policies for DMO, DMl and DM2 are g,: R6+R, g,: R3+R, 
and g,: R-+R, respectively, with 

(2.2a) 

(2.2b) 

a2 =g2(Y2). (2.2c) 

Furthermore, we let h,: R3+R [i.e. h,=h,(z,y,,y,)] and h,: R2+R [i.e. 
h, =h,(y,,y2)] denote ‘static’ policies for DMO and DMl, respectively. All 
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these functions are assumed to satisfy the usual regularity conditions, 
discussed in Bagar (1984), which are that the functions be jointly measurable 
in their arguments and they induce well-defined random variables on the 
original probability space. We let G, denote the convex policy space where gi 
belongs, i =O, 1,2, and let Hj denote the function space where hj belongs, 
j=O, 1. 

Let ui(x, a,, a,, uJ denote the utility function of DMi (i=O, 1,2), whose 
expected value, Ui, is to be maximized by him, under the three-level 
Stackelberg equilibrium concept [cf. Bagar and Olsder (1982)], with DA40 
being the leader, DMl the first follower and DMZ the second follower. The 
objective functional of DMi is the expected utihty U$, defined on the product 

policy space G, x G, x G, and given by 

where for each i ui is related to gi through (2.2) and E{ > denotes the 
expectation operation over the prior statistics of the sextuple 

(X,4Yl,YZ,~,,~Z). 
We now introduce a set of assumptions which make the underlying 

optimization problems well defined. 

Assumption 2.1 

(1) The policy spaces {Gj} and the utility functions {ui} are defined in such a 
way that the expected utility (2.3) is finite for every gj in Gj, j=O, 1,2. 

(2) For each x in R, uO and u, are concave and continuously differentiable in 

the triple (uo, a,, a,), and are strictly concave in the pair (a,, u2). 
(3) For each x in R, u2 is continuously differentiable in (u,,u,,u,), concave 

in (a,,~,) and strictly concave in a,. 

Now let the triple (h’,, h;,gi) provide a global maximum (i.e. a team- 
optima1 solution) for U, on H, x H, x G,. Since u,, depends only on the 
random variable x, and k,, k, are conditionally independent of x, nothing 
can be gained as far as this maximum goes by including also this private 
information in the information set of DMO; that is, the maximum would have 
been the same even if we had expanded H, so as also to include these two 
random variables. We also note that whenever it exists, such a maximum is 
unique because of the strict concavity assumption on uO. To ensure existence 
of a maximum, it is possible to impose some topological conditions on 
H, x H, x G,, but we will not go into such technical details here since they 
are only peripheral to the developments to follow. Even if such a maximum 
does not exist, we can view the triple (hb, h:,g;) to represent one set of static 
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policies, which leads to a performance, Ub, that is acceptable to the leader. 
The main result of the paper, to be presented in the next section, is that there 
indeed exists an incentive policy for the leader (an element of GO) such that 
under the rules of the game, and under some additional conditions, the 

desired performance is attained. 

3. Main result 

Before presenting the main result alluded to above, we first introduce some 
new notation and terminology, and prove two auxiliary lemmas. 

Let E{( .)/I-} denote the conditional expectation of a random variable (.) 
based on the observed value of some (other) random variable r. Let 
PJ( . , p, .) denote the first-order partial derivative of a function f with 
respect to the indicated argument, p. Let Ub denote an acceptable level of 
performance for the leader, achieved by the triple (hb,h:,g\), as introduced in 
section 2. For short, let 

ah: = hb(z, y,, ~2); u:: =/I~( y,, ~2); a:: =g;( y2), and define (3.1) 

a’: = k,a: + k,a;. (3.2) 

Introduce the functions F,: R3+R, F,: R2+R, F,: R+R defined by 

Fo(z,~l,~~):=E(~,,~~(~,ab,a;,a:)lz,y,,y,}, 

F,(Y,,Y,):=E(~,,~,(~,~~,~:,~:)IY,,Y,), 

F2(y~):=E(~,,ul(x,ab,a:,a:)ly,}. 

Finally, let b: =(z, y,, y,, k,, k2), and introduce the pair of equations 

E{Q,F,(z,~,,y,)k,ly,,y,)=F,(~,,~2), 

E(Q,F,(z,~,,y,)k,ly,} =F,(Y,), 

in terms of a b-measurable random variable Qo. 

(3.3a) 

(3.3b) 

(3.3c) 

(3.4a) 

(3.4b) 

Condition 3.1. There exists at least one b-measurable random variable Qo, 
mutually satisfying (3.4). 

Remark 3.1. First note that by taking the expected value of both sides of 
(3.4a) over y,, and conditioned on y,, one arrives at 
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which is a necessary condition for (3.4a). Further note that in this equation 
[as well as in (3.4a)] k, can be replaced, without any loss of generality, by 
E{k,lz, y,, y,} =: k,; likewise, in (3.4b) k, can be replaced by its conditional 
expectation with respect to the same set of measurements, which we denote 
by E,. From these observations, it follows that a necessary condition for 
existence of at least one solution to (3.4) is that the two random variables E, 
and E, be linearly independent (that is, there is no constant e such that 
E, =ek,), unless the random variables F2( yZ) and E{F,(y,, y,)l y,} are 
linearly dependent. 

Lemma 3.1. Let Condition 3.1 be satisfied, and Q. be one such solution. Then 

there exists a policy g,* fbr the leader, 

(3.5) 

under which the unique solution to the problem of maximizing U,(g,*,h,,g,) 

over H, x G, is (h;,g\). 

Proof. Note that the optimization problem 

is in fact a two-agent stochastic team problem with a static information 
structure. The first-order necessary conditions for an optimum (which are 
obtained by first holding g, fixed and taking variation with respect to h,, 

and then reversing the roles of the two variables) are: 

(**) 

In writing the above we have utilized the fact that any functional optimiza- 
tion problem 

max,=,,,,E{ f(x,a)} can be written as 

E{max,E{f (x9 a)1 y} 1 

Now, taking the total derivative in (*) and (**) in terms of partial derivatives 
after interchanging that operation with conditional expectation (this inter- 
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change is valid under our smoothness assumptions), we arrive at the 
following equivalent equations (where we suppress the arguments): 

If we choose a, = Mr( y,, y2), a2 =g:(yJ in the above, it follows that whenever 
Q. satisfies (3.4), (*‘) and (**‘) become identities. Thus, (h\,g\) constitutes a 
pair of stationary policies for the stochastic team problem. By Theorem 1 
(p. 863) of Radner (1962) they are also Bayes (i.e. team-optimal). Further- 
more, they are unique as Bayes rules because of strict concavity of u1 in all 
three action variables, for every value of x (cf. Assumption 2.1) in addition 
to the fact that the chosen policy for DMU is linear which in turn is linear in 
u1 and az. We note that the ‘local finiteness’ condition of Theorem 1 of 
Radner (1962) is satisfied here because of our Assumption 2.1. 

In words, what Lemma 3.1 says is that if DMZ had the same utility 
function as DM 1 (though still operating under different information), then 
the incentive policy (3.5) by the leader would induce him (i.e. DM2) and 
DMI to act jointly in such a way so as to maximize DMO’s expected utility. 
In our formulation, however, the second follower has a (generally) different 
utility function, and hence pursues a different set of goals than DMf. The 
question then is whether under the assumed mode of play (i.e., strict 
hierarchy), the leader would still be able to enforce his most favorable 
solution. The answer is in the affirmative, as elucidated in the sequel. 

Working towards our main result, we first observe that if the leader 
announces the policy (3.5) and Condition 3.1 is satisfied, then the best 
performance the first follower (DMI) can expect to achieve is U,(g,*, h:,g;), 
which requires full cooperation by the second follower. Since DM2 is in 
reality maximizing a different objective functional, the cooperation is not 
there, unless DM 1 can enforce it by using his dynamic information. This will 
indeed be possible if there exists a policy for DMI, say gT, in G,, under 
which the optimal response of DM2, computed through the maximization 

problem 

(3.6a) 

is uniquely given by g;, and furthermore that 

g:k:(YA Yl, Y2) -h:(Yl, Y2). (3.6b) 

Lemma 3.2 below says that such an incentive policy exists for DMI under 
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some fairly reasonable conditions. Towards this end, first we introduce three 
functions: fO: R3-rR, f,: R2-+R, f2: R-R, defined by 

Second, with c: =( yr, y2), we introduce a c-measurable random variable Qr, 
which satisfies the linear equation: 

where Q. is obtained from (3.4). 

Condition 3.2. The function ,f(c) defined by 

f(c): =.fl(+ E{Q,,foh Y,, Y,)+) (3.9) 

is non-singular for every c: =( y,, y2) in R2. 

Lemma 3.2. Let Condition 3.2 he satisfied. Then, 

(i) The linear equation (3.8) admits at least one solution Q, 

(ii) There exists a policy g: for DM 1, 

(3.10) 

where Q1 is any c-measurable solution of (3.8) under which the maximization 
problem (3.6~) admits the unique solution g\, and ,furthermore the side condition 

(3.6b) is satisfied. 

Proof. The first part of the Lemma follows from Proposition 2 (p. 205) of 
Basar (1984). To prove the second part, we take the variation of 

U,(go*,g:,g,) with respect to g,, which is equivalent to taking the total 
derivative of U(az, y2): = E{u,(x,gz(a, b),gf(a2,c),a2)ly2} with respect to a=. 
With gX and gl taken as in (3.5) and (3.8), respectively, where Q. and Q1 
satisfy (3.4) and (3.8), it is not difficult to see that the derivative is identically 
zero when a2=g\(y2j. Hence g\ is a stationary point of U,(g,*,g:,g,). Since 
u2 was taken to be concave in (a,, aI) and strictly concave in a2, and since gf 
and in turn go* are linear in u2, it follows that U(a,,y,) is strictly concave in 
a, for every y2, and hence its stationary point is the unique maximum for 
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each y,. Finally, the side condition (3.6b) is clearly satisfied by the policy 

(3. lo), as can be seen by inspection. 

Remark 3.2. Using the function f defined by (3.9), eq. (3.8) can be rewritten 
in the simpler form 

(3.8’) 

Let w be any c-measurable random variable such that E{wf(c)ly,} #O for 
every y, in R. Then the choice Qi = wm(y2)/E{wf(c)Iy2} is a solution to (3.8’), 
as can be verified by direct substitution. Since there will in general be many 
w’s meeting the non-singularity condition, the solution to (3.8) will in general 
be non-unique. This provides us with additional degrees of freedom in the 
tinal choice of Q,, and leaves room for the introduction of some additional 
criteria involving issues like ‘minimum sensitivity’ and ‘robustness’, as in 
Cansever and Basar (1985). For example, the optimal choice could desensi- 
tize the performance to parametric changes in the utility function of DM2. 

We are now in a position to present the main theorem of this section, by 
combining the results of Lemmas 3.1 and 3.2. 

Theorem 3.1. Let Ub be an acceptable performance level by the leader, which 
is achieved by some triple (hb, h\,g\) in H, x HI x G,. In terms of this triple, 
let Conditions 3.1 and 3.2 be satisfied. Then, under the hierarchical mode of 
play, the incentive policy gX for the leader, given by (3.4, forces the two 
followers to a cooperative solution, leading to achievement of the ideal 

performance Ub. 

Proof. The result follows directly from Lemmas 3.1 and 3.2, and the 
discussion preceding Lemma 3.2. 

We conclude this section by making a number of important observations 
on the general solution presented in Theorem 3.1. 

(1) The Theorem covers the following two extreme cases: (i) the leader 
does not have any direct influence on the utility function of DM2 (i.e. 
Va,u,rO) and (ii) DMI does not have any direct influence on u2 (i.e. 
Va,u,=O). In either case, the leader is able to force both followers to a 
Pareto-optimal solution to his utmost advantage. In the former case, this 
implies that the inducement provided by the leader’s optimal incentive policy 
propagates down the hierarchy and its effect is felt by the second follower 
(who has no direct link to DMO) through the first follower’s policy choice. 

(2) The coefficients k, and k, in the leader’s dynamic measurement play an 



212 T. BaJar, Stochastic incentive problems 

important role in the final result and the corresponding existence conditions. 
As hinted earlier in Remark 3.2, since k, and k, influence eqs. (3.4) and (3.8) 
only through k,: =E{k,lz, y,, yz} and 6,: =E{k,lz, y,, yz}, we can take them 
to be (z,y,,y,)-measurable, without any loss of generality. For Condition 3.2 
to hold, it will generally be necessary for k, and E, to be linearly 
independent, which rules out the possibility of choosing them as deterministic 
parameters. Hence, if k, and k, are viewed as additional design parameters, 
to be chosen by DMO based on his static information, then they should be 
‘stochastically rich’. This makes the consequences of the leader’s policy 
decision (based primarily on his private information) unpredictable by the 
two followers, with this uncertainty forcing them to a full cooperation. Note 
that with a deterministic (purely predictable) information pattern, such a 
cooperative solution can never be enforced. It is perhaps ironical that the less 
the two followers know of the consequences of their actions (such as the 
reward structure) the better it is for the leader (in terms of enforcement of 
the cooperative solution), provided of course that the uncertainty is stochas- 
tic with a common distribution known to all parties. 

(3) As was mentioned earlier, the ideal solution (h’,,h:,g\) does not have 
to be chosen as a utility maximizing solution (to the leader). It may also be 
construed as a ‘compromise’ solution, which takes into account the welfare of 
all the DM’s involved. Provided that the two conditions are satisfied, such a 
compromise solution can indeed be enforced using the smooth incentive 

policy g,* given by (3.5). 

4. An example 

We provide, in this section, a simple example to illustrate the theoretical 
results of the previous section. We consider a duopolistic market with a 
hierarchical structure involving, say, a state enterprise (DMI) and a private 
firm (DMZ), producing identical products. A third party (the government - 
DMO) regulates the production level by controlling the demand (thereby the 
price) for the product. This may occur, for example, if the government is the 
sole buyer of the product. 

There are two possible states of the (economic) environment, which affect 
desired levels of production as well as the desired price level (by the 
government). In accordance with the earlier notational convention, we 
denote this discrete variable by X, and the two possible states by x1 and x2. 
We assume that x1 and xz are equally likely (that is each occurs with 
probability 0.5), and they are observable by the government. The other two 
agents, DMl and DM2, however, do not know the true occurrence of x 
(particularly at the time they decide on their production levels), but they 
know that it takes only the given two values, and with equal probability. In 
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addition to this common knowledge, DM 1 can make some inference of the 
true state, but with some error. More precisely, DMl makes a correct 
assessment of the true state (xi or x2) each with probability 0.6, and errs in 
each case again with equal probability 0.4. Mathematically speaking, DMl 
observes the true value of a discrete variable y which takes two values, y, 
and y,, with the conditional probability of the event { y = yi} given that 
x=xj being 0.6 for i=j and 0.4 for i different from j (i, j= 1,2). Note that, 
with this construction, the random variable y takes the given two values with 
equal probability 0.5. In the general formulation of section 2, y corresponds 
to y,, x here corresponds to both x and z (that is, they are identical), and the 
variable y, is vacuous. 

The action variables a,,a,,a, are, respectively, the price level set by the 
government and the production levels of DM 1 and DM2. The government 
makes its price policy decision based also on some observable a that involves 
a random linear combination of the production levels of the two firms, as in 
(2.1). Here, k, and k, are two random variables which are not directly 
observable (particularly at the time production decisions are made), but they 
could be correlated with the two random variables x and y. The eq. (2.1) 
could admit the interpretation that DMO observes the output of a process 
that uses both a, and u2 as inputs, with the production process not being 
totally deterministic. He is, however, allowed to know their realized values at 
the time the price policy is implemented. 

Now, let us assume that DMO (the government) determines some desirable 
price and production levels (which could be the result of some welfare 
maximization problem). These will have to be compatible with the infor- 
mation available to the decision makers, since the objective is to enforce 
them (smoothly - via incentives) on the two firms (the followers). Let us 
denote these, as before, by a;, a; and at,, respectively. Their dependence on 
the various variables introduced above would be [following also from (3.1)]: 

a;: = hb(x, y); a\ : = h:(y); a:: = a constant. 

Let us introduce, as before, h: =(x, y, k,, kJ. Then, the theory of section 3 
says that, provided that the utility functions of DMl and DM2 have the right 
concavity properties, and some additional conditions specified there are 
satisfied, there will exist an optimal price policy for the government, in the 

form 

so*(a, b) =&Ax, Y) - Qo(a - 4, (4.1) 

where Q. is some b-measurable random variable [satisfying (3.4)]. Such a 
policy will force the two firms to the desired production levels a:,&, under 
the stipulation that there is a hierarchy between these two Iirms, and DMl 

J.Pol E C 
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can enforce a ‘smooth’ production policy on DM2. This policy will also be 
induced by (4.1), and will be in the form [from (3.10)]: 

s:(uz,y)=h;(y)-Q,(a,-a:), (4.2) 

where Qr is some y-measurable random variable, satisfying (3.8). Note that 
this policy shows explicit dependence on the production level of DM2. 

We now construct these policies for a specific set of utility functions for 
DMl and DM2, and show that all the conditions of Lemma 3.1 and Lemma 
3.2 are satisfied, even if some of the concavity conditions are relaxed. Toward 
this end, we first take the utility function of DM2 as the standard duopolistic 
profit function with a linear cost of production [see, for example, Friedman 
(1983)]: 

U2 = a(#2 - (1/2)a,. (4.3) 

It is of interest to note that the utility function of DM2, as given above, does 
not explicitly depend on the action variable of DM 1. For DM I, on the other 
hand, we adopt the utility function 

ur =&Jar -(1/2)a, +(l/lO)u,, (4.4) 

where the first two terms are as in (4.4), and the third term is included so as 
to provide some incentive for DM 1 to also take into account DM2’s profit 
maximization while developing his production policy. This term could be 
interpreted as a subsidy to DM 1 through taxation of DM2. To make the 
problem symmetric, a similar subsidy term (based on a fraction of DM Z’s net 
profit) could have been included in (4.3) but we will not pursue that 
symmetric case here. 

Toward obtaining some numerical results, we take the desired price level 
a; to be 1 when x=x1 and to be 2 when x=x2. Furthermore, we take a\ to 
be 1 when y=yr and to be 2 when y = y,, and take a\ to be equal to 1. 
Finally, we choose k, to be 1 (that is, a degenerate random variable), and 
k, to be x-measurable and taking the two values 1 and 2 when x is x1 and 
x2 respectively. Let the support set of the random variable Q. be 
(Q011,Q012,Q021,Q022}, where Qoij is the value Q. takes when x=xi and 
y=yj, for i,j=1,2. The n, the pair of eqs. (3.4) can be rewritten in terms of 
the Qoi;s as three equations: 

6.6Q,, I+ 8.8Q,, I= 9 

8.4Q0r2 + 25.2Q,,, = 11 

6Q ol1+4Qo,,+8Qo,,+12Qo,,=2. 
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This set of equations admits multiple solutions, any one of which would be 

an acceptable choice. To produce a candidate, we force the symmetry 
condition Q,,i i = QoZ2, under which the unique solution is 

Qoll =Q,,22= 1.3963443; Q0,2= -2.879508; Qe2i = -0.024531. 

(4Sa) 

Using this in (3.8), we obtain the constant solution 

Q1 = 1.1073114. (4Sb) 

Of course, (3.8) would admit other solutions which would be functions of the 
variable y, but the one above should be preferable since it is a constant. 

Hence the example of this section admits multiple solutions, all in the form 
(4.1)-(4.2) for DMO and DMl, with one set of coefficient values given by 
(4.5). In simpler form, the government’s optimal demand curve is given by 
the linear relation 

a,rg,*(u,b)=ub-Q,(a-klu: - l), (4.6) 

where Q. is given by (4.5) and a&a: are the desirable levels for price and 
production (for DMl) as given earlier. Faced with this price policy, and 
taking the existing hierarchy into consideration, an optimal decision for DMl 
becomes the production policy 

a,Eg:(a,,y)=u:-1.1073(u,- 1). (4.7) 

Under (4.6) and (4.7) the expected profit of DM2 is maximized uniquely by 
the production level u: = 1, and hence the goals set at the beginning have all 
been met, with the inducement provided by the ‘smooth’ policy (4.6). 

We conclude this section by making a number of useful observations. 

(1) The first is of a technical nature and concerns Assumption 2.1. As we 
have hinted earlier, the example treated above does not meet the joint 
concavity requirements set there; however, the utility functions of both DMl 
and DM2 can be made strictly concave by an appropriate choice of the 
leader’s policy. In that case (and particularly in the context of this example) 
the proofs (and thereby the statements) of Lemmas 3.1 and 3.2 remain still 
valid, which shows that the main result of this paper holds under even less 
stringent conditions. 

(2) The second observation relates to the fact that even though the second 
follower’s utility function does not show explicit dependence on the first 
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follower’s action variable, this dependence could be brought in quite 
naturally through an incentive policy, as we have seen in the duopoly game 
above. 

(3) The third and final comment is that the above duopolistic framework 
can be extended to oligopolistic situations without much difficulty. There the 
single private firm at the bottom of the hierarchy would be replaced by 
several oligopolistic firms [in the spirit of Sertel (1988)], each of whom would 
have a profit function of the type (4.3), and would play a Nash game among 
themselves. The variable a2 would then be the aggregate production level of 
the private sector, and (3.8) would be replaced by as many similar equations 
as the number of firms. Even though this extension is not difficult concep- 
tually, it does require the introduction of additional excessive notation and 
some new terminology for the general case, which is the reason why we have 
avoided doing it here. 

5. Some extensions 

The analyses and results of this paper could be extended in several 
directions. The first such extension would be to the case of vector-valued 
action and random variables, which would cover scenarios where the agents 
control more than one instrument variable. We have avoided doing this here 
simply not to bury the basic message of section 3 in the notational 
complexity which would be needed in that case. We should note, however, 
that the gist of the results here carry over to the vector case, with the leader 
now having some additional degrees of freedom in the choice of the best 
incentive policy. 

A second extension would be to problems where there are more than three 
levels of hierarchy. Again the analysis of this paper could be carried over to 
such problems, by repeated application of the ideas used in the derivation of 
Lemmas 3.1 and 3.2. One can show that the indirect influence of the leader 
on the utility maximizing behavior of the following agents is still present, 
provided that some conditions similar to those given in section 3 are 
satisfied. One could also allow for more than one agent to act at each level, 
either as a team or as Nash followers, with inducement towards a coopera- 
tive behavior again provided by a smooth incentive policy of the leader. To 
obtain some explicit results in this case, our earlier work on the two-level 
problem, reported in Cansever and Bagar (1985), could provide some of the 
necessary tools. 

One question that could be raised at this point is whether the results 
presented here would be valid if the leader had obtained imperfect (noisy) 
information on the followers’ actions (for example, if he had not known the 
realized values of the two random variables k, and k, in our formulation). 
Another such imperfection would arise if the leader did not have access to 
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the measurements made by the followers. In such cases, the kind of strong 
results obtained here would no longer exist, and one could at best hope to 
obtain asymptotic results of the type developed by Radner (1981, 1985). This 
will then require a repeated game formulation, where the leader’s policy also 
includes a ‘learning’ component. Derivation of optimal ‘review strategies’ for 
such repeated games when there are multiple levels of hierarchy is a 
challenge for the future. 
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