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TECHNICAL NOTE 

Some Thoughts on Saddle-Point Conditions and 
Information Structures in Zero-Sum Differential 

Games 

T.  B A S A R  * 

Communicated by Y. C. Ho 

Abstract. For a very simple two-stage, linear-quadratic, zero-sum 
difference game with dynamic information structure, we show that (i) 
there exist nonlinear saddle-point strategies which require the same 
existence conditions as the well-known linear, closed-loop, no-memory 
solution and (ii) there exist both linear and nonlinear saddle-point 
strategies which require more stringent conditions than the unique 
open-loop solution. We then discuss the implication of this result with 
respect to the existence of saddle points in zero-sum differential games 
for different information patterns. 

Key Words. Game theory, linear-quadratic games, zero-sum differen- 
tial games, saddle-point solutions, information patterns. 

1. Introduction 

It  has recently been shown in Refs. 1 and 2 that deterministic nonzero-  
sum differential games (NZSDG)  with dynamic information structures 
admit  uncountably many  Nash equilibrium solutions, with the conditions of 
existence and the Nash equilibrium point being different in each case. Since 
zero-sum differential games (ZSDG)  are special types of N Z S D G ,  the 
question now arises as to whether  the same kind of phenomenon can be 
observed in the saddle-point  solution of ZSDG.  

There  is a result by Witsenhausen (Ref. 3), who has shown that, if a 
Z S D G  admits a saddle point for some information pattern,  then it remains a 
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saddle point when the information available to either or both players is 
increased. This might seem to be reasonable because, since one is basically 
solving a deterministic game, one always has the option of throwing away 
(not using) the extra available information; that is, the saddle-point strategy 
pair obtained under the old information structure can still be considered as a 
well-defined saddle point strategy pair under the new information pattern. It 
is, however, quite possible that some other strategy picked by the minimiz- 
ing player under the new information pattern will be more favorable to him; 
that is, if the duration of the game is considered as a variable, then he can 
possibly extend the duration of the game beyond that dictated by the 
saddle-point solution obtained under the old information structure. This 
conjecture has, in fact, been verified in Refs. 4 and 5 within the context of 
linear-quadratic ZSDG, where authors have shown that, by employing 
pure-feedback (closed-loop, no-memory) strategies, the minimizer can 
actually extend the duration of the game beyond that imposed by the 
open-loop saddle-point solution. The question, though, has never been 
raised in the literature as to (i) whether there exists some other saddle-point 
solution under the closed-loop information structure which is even less 
restrictive than the pure-feedback solution and (ii) whether the open-loop 
saddle-point solution is at least as restrictive as every saddle-point solution 
obtained under the closed-loop information structure. 

In the light of the new results presented in Refs. 1 and 2 within the 
context of NZSDG, we tend to think that the answers to the above questions 
are not obvious and require further investigation. In order to gain some 
insight into the problem, we consider, in this paper, a very simple two-stage 
linear-quadratic game with dynamic information pattern and show, by 
employing the ideas introduced in Refs. 1 and 2, the following: (i) the linear 
pure-feedback saddle-point solution is the least restrictive solution within 
the linear class; however, there exist nonlinear saddle-point strategies which 
are equally restrictive; and (ii) the open-loop saddle-point solution is not the 
most restrictive solution, i.e., there exist closed-loop saddle-point strategies 
which are even more restrictive (in terms of parameters of the game). 

2. Zero-Sum Game 

Consider the two-stage zero-sum game defined by the cost function 

J=~xl+u)2+au2-~v2}, a>O, /3>O,  (1-1) 

and the state equation 

xl =Xo+V, (1-2) 
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where all variables are scalar and assume values in ~ ~. u denotes the control 
variable of Player 1 who is the minimizer and acts at stage one. v is the 
control variable of Player 2 (the maximizer) who acts at stage zero. Player 2 
knows only the value Xo of the intitial state, whereas Player 1 knows Xo as 
well as the outcome x~. We denote by Fo the class of all measurable maps 
from ~ into ~ ,  and by F~ those that map ~ x ~1 into ~ .  At stage zero, 
Player 2 picks 3'0~ Fo; and, at stage one, Player 1 picks 3"1 e F~. 

With these definitions, the pair {yo* c Fo, 3'* c G} is said to be a saddle- 
point solution for the zero-sum game, if it satisfies 

J(3"*, 3'o)-< J(y*, 3'0*)-< J(3"~, ~/*), (2) 

for all 3"0 ~ Fo, y, e FI. 
Now, by applying the ideas developed in Refs. i and 2 to the r.h.s, of (2), 

we can establish the following property: 

Property 2.1. 
the relation 

with 

For any saddle-point solution {3"° s Fo, Yl ~ ]G}, we have 

3"dxl, xo) = - [1 / (1  + a)]x~ + 0(x~, ~) ,  (3-t) 

G = xo + y0(Xo), (3-2) 

for some measurable function ~ ( . , .  ) of two variables, with the additional 
property that ~b(y, y) = 0, Vy e 5~ 1. 

In order to complete the characterization of all saddle-point solutions 
to the problem, we still have to find the strategies of Player 2 that are in 
equilibrium with (3-1) for different choices of ~0. We now restrict the 
permissible strategies of Player t to a proper subset of F1 by assuming 4~ to be 
twice continuously differentiabte on ~ ~ x ~ ~. The reason for this is mainly to 
avoid some unnecessary technical difficulties in the analysis to follow. 

Substitution of (3-1) into (1-~) and maximization with respect to v 
yields the following first-order and second-order conditions (assuming that a 
maximum exists): 

[a/(1 + o~)]xl + (1 +a)~(x~, 2~)[&b(x~, 20/Oxl]-[3v = 0, (4-I) 

[a/(1 + a ) + OO/ Oxl ]2 + (1 + o~ )q,( O2 0 /  Ox~) + o:[1/ (1 + ~ ) -OtO/ Ox~]2- fi <0 ,  
(4-2) 

where xl depends on v through (1-1). 
Now, at equilibrium x~ = 21, and hence tk(x~, £~) = 0. This fact, used in 

(4-1), yields a unique solution for v, namely, 

v* = vo*(Xo) = {~/[t~ + ~ ( ~  - 1)]}Xo; (5-1)  
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and this is a well-defined maximizing solution under the sufficiency condi- 
tion (4-2) at equilibrium, which is 

/3 > a/(1 + a) + (1 + ol)(0O/0Xl)21=]l, (5-2) 

£a = {/3 ( 1 + t~ )/[/3 + a (/3 - 1 )]}Xo. (5-3) 

Hence, we have the following theorem. 

Theorem 2.1. For the zero-sum game with dynamic information 
structure considered in this paper, the pair 

y*(xl, Xo) = - [ 1/( 1 + a)]x~ + ~0(xl, 21), (6- i ) 

y *(Xo) = {a/[/3 + ol(/3 - 1)]}Xo, (6-2) 

with £1 given by (5-3) constitutes a sadd l e -po in t  solut ion for any measurable 
~0(.,. ), subject to the restrictions given above. The condition of existence of 
such a solution is given by (5-2) and depends on the specific choice of th. 

3. Some Comment and Discussion 

It should, first of all, be noted that, unlike the nonzero-sum game 
discussed in Ref. 1, the saddle-point strategy of Player 2 is independent of 
the specific choice of ~0; consequently, the saddle-point cost J(y~, yo) is 
independent of ~0, whenever a saddle point exists. However, existence of a 
saddle point depends very much on what representation Player 1 employs. 
This is already partly known in the literature through papers like Refs. 4 and 
5 where authors have mentioned, within the context of linear-quadratic, 
zero-sum differential games, that the conjugate-point condition of the 
Riccati equations involved will be different when both players play open- 
loop strategies than in the case when both players play pure-feedback 
strategies. As we mentioned in Section 1, it has even been shown that the 
duration of the game will be longer for the closed-loop feedback case than 
for the open-loop case. What this really corresponds to, for the problem 
treated here, is that (assuming that ~ is fixed apriori)  the existence condition 
on/3 should be less restrictive in the feedback (no-memory, closed-loop) 
case than in the open-loop case. Since q,(xl, xl)---O for the former and 
~(xl, ~1)----[1/(1 + a)](x~- ~1) for the latter, this can easily be seen to be the 
case. 

An interesting result of our analysis, though, is that, for any fixed a, the 
minimum of the r.h.s, of (5-2) is ~/(l+o~), which corresponds to the 
constraint imposed on/3 by the closed-loop, no-memory strategy. However, 
this least bound is attained not  only  for that particular representation 
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employed by Player 1 (probably contrary to what intuition might say). For 
any saddle-point solution (6) with 

(00  -0, 

the existence condition will still be the one imposed by the well-known linear 
solution. In particular, the nonlinear strategy 

N 

y*(x,, xo)= - [1 / (1  +a)]Xl + Y. ai[sin (x l -  yl)]i, 
i=2  

together with 

7*(xo) = {al[13 + ~(~ - 1)]}xo, 

will constitute a saddle-point solution for any a~ and any integer N, under the 
existence condition imposed by the well-known linear solution. 

This observation, in our opinion, will have a great impact on the 
research activities involving existence of saddle-point solutions in deter- 
ministic differential games. In obtaining existence conditions under the 
closed-loop information structure, one should be careful to take into 
consideration all possible representations of the same control value and the 
nonuniqueness arising from these different representations. To give one 
example, for the LQ differential game it is well known that, under both the 
open-loop (OL) and the closed-loop no-memory (CLNM) information 
structures, the saddle-point cost of the game will be unique (even though it is 
attained by different linear strategies in each case), provided that both 
conjugate-point conditions are satisfied. It is also partly known that these 
existence conditions are less restrictive for the CLNM information structure 
than for the OL information structure. Hence, if the minimizing player is 
given the option of picking one or the other, he would definitely play a 
pure-feedback strategy. However, it is not known yet (and the question has 
never been raised before) whether, for the general, closed-loop information 
structure, some other kind of strategy would require an even less restrictive 
existence condition. It is within the realm of possibility that, by playing an 
appropriate nonlinear strategy, which takes into account the present as well 
as the past values of the state vector, the minimizing player can extend the 
duration of the game beyond that imposed by the linear CLNM strategy. 
Investigation of what seems to be a very interesting feature of saddle points 
in differential games still remains a challenge for future research. What we 
know today, though, is that, at least within the context of the ZS game 
discussed in this paper, there will exist nonlinear saddle-point strategies 
which require the same existence conditions as the least restrictive linear 
solution. 
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One final remark is that, as an answer to the second question raised in 
Section 1, it should be clear, from the existence conditions (5-2) and the fact 
that the OL solution is characterized by 6(xl,  9~1) -= [1 / ( I  + a)](xl - G), that 
there exist other  saddle-point strategies which are even more restrictive than 
the OL solution. 
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