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Abstract. This paper discusses a general approach to obtain optimum 
performance bounds for (iV + 1)-person deterministic decision prob- 
lems, N + 1 >2,  with several levels of hierarchy and under partial 
dynamic information. Both cooperative and noncooperative modes of 
decision making are considered at the lower levels of hierarchy; in 
each case, it is shown that the optimum performance of the decision 
maker at the top of the hierarchy can be obtained by solving a sequence 
of open-loop (static) optimization problems. A numerical example 
included in the paper illustrates the general approach. 
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1. Introduction 

This paper  addresses a general class of deterministic mult iperson 
dynamic decision problems that involve hierarchy in command  and control, 
decentralization in information,  and possibly different objective functionals 
for  different decision units, with the objective functional of the decision 
maker  at the top of the hierarchy (known as the coordinator  or leader) 
representing that  of the entire system. The  pr ime objective in such problems 
is to obtain a set of decision laws for the coordinator,  which would lead 
to an op t imum performance  for the overall system, by also taking into 
account the hierarchies in decision and control, and possible rational 
responses of the other decision units. 
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In general, this is an extremely challenging class of problems to solve, 
the difficulty being due mainly to the dynamic nature of the information 
available to the decision units. This difficulty can be circumvented partially 
by assuming certain structural forms for the decision rules and by seeking 
the solution in that restricted class--that is, by confining attention to 
suboptimal policies. However, if the achievable optimum performance in 
the general class is not known, it is not possible to assess the degree of 
suboptimality of such designs and to judge whether the resulting perform- 
ance is satisfactory or not. Hence, it is highly desirable to develop techniques 
that would yield (tight) bounds for the attainable optimum performance 
in the general class of policies, if it is not possible to obtain the optimal 
solution itself. 

Such a technique has been developed recently in Ref. 1 for the class 
of hierarchical decision problems with two decision units and with partial 
dynamic information. The original dynamic problem (which cannot be 
solved using the standard techniques of optimization) is converted into two 
open-loop (static) optimization problems which can be solved using the 
standard techniques of optimization and optimal control theory, and the 
optimum performance of the original dynamic decision problem can readily 
be obtained from these solutions. 

Such hierarchical decision problems are also known as Stackelberg 
games, which have attracted considerable attention in the literature in 
recent years (see, e.g., Refs. 2-6), and research activities have been concen- 
trated on the case of perfect dynamic information, under which the optimum 
performance coincides with the minimum value of the cost function of the 
leader (assuming that the leader has the power of announcing and enforcing 
an appropriate incentive scheme). Reference 3 discusses also Stackelberg 
games under partial dynamic information and obtains a set of necessary 
conditions for the leader's continuous-time optimal control problem within 
the class of differentiable strategies for the leader. Even though such 
necessary conditions may be useful in characterizing candidate Stackelberg 
strategies (within the class of differentiable functions), they do not lead to 
optimum performance bounds, unless these strategies are explicitly compu- 
table. The approach of Ref. 1, however, is directed primarily toward 
obtaining the optimum attainable performance for the leader, without 
explicitly determining the corresponding strategies or incentive schemes. 

In the present paper, we discuss an extension of the new technique of 
Ref. 1 to decision problems with more than two decision units and hierar- 
chies, and again under partial dynamic information. We treat both coopera- 
tive and noncooperative modes of decision making between the units 
operating at the same level of hierarchy and show, in each case, that the 
optimum performance can be determined through the solutions of a set of 
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open-loop (static) optimization problems. This theory is developed in 
Section 3, while Section 4 is devoted to an illustrative numerical example. 
A precise problem formulation is provided in Section 2. 

2. General Formulation and Definitions 

In this section, we discuss possible configurations of coordination and 
control in a hierarchical system which is controlled by N + 1 decision 
makers, each with a possibly different objective functional and possibly 
different dynamic information. We take N >i 2, and observe that every 
possible configuration can be obtained by appropriate concatenation of the 
two prototypes displayed in Fig. 1. The first one illustrates the case of two 
levels of hierarchy: one of the decision makers (DM0), which we may also 
call the coordinator, is at the top of the hierarchy, and he enforces his 
decision(s) on the remaining decision makers, who are all at the same 
(second) level of hierarchy. These N decision makers (called followers) 
may have cooperation among themselves, or they may act noncoopera- 
tively--thus giving rise to different possibilities for an equilibrium solution. 
The coordinator's role here is to ensure that some optimum performance 
is attained for the overall system. Accordingly, one of our objectives in 
this paper is to obtain tight bounds for this optimum performance under 
both cooperative and noncooperative actions of the followers and when 
the coordinator observes these actions only partially. 

The second configuration, depicted in Fig. lb, is known as a linear 
hierarchy, since there are N + 1 levels of decision making and each level 
is occupied by only one decision maker. The decisions are announced and 
enforced sequentially, in the order shown in Fig. lb. The role of DM0 (at 
the top of the hierarchy) is again to coordinate the actions of the remaining 
decision makers, by also taking into account the existing hierarchy in the 
decision making and possible information exchanges between different 

Fig. 1, 

t DMN 
DM1 DM2 DM5 DMN 

(e) (b) 

Two prototypes of possible configurations in hierarchical coordination and control. 
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levels; he will seek an optimum performance for the overall system, which 
is also reflected in his objective functional. In the paper, we shall obtain 
tight bounds for this optimum performance under partial dynamic 
information. 

For the sake of clarity in exposition, we will restrict our attention to 
the case N = 2, which, however, introduces no real loss in generality, since 
the three decision maker case captures all the essential features and 
intricacies of the general problem and provides sufficient insight so that 
the results can be extended with no major difficulty. 

In order to introduce precise definitions for the optimum performance 
under both types of hierarchy depicted in Fig. 1, we consider a three-person 
decision problem in normal (strategic) form, described by the cost func- 
tionals Jo(yo, yl, "Y2), Jt(Yo, Yl, Y2), ]2(TO, Yl, Y2), where the strategies yo, 
yl, y2 belong to a priori known strategy spaces Fo, F1, F2, respectively. 
Here, ]o may be selected dependent on J~ and J2 (such as their convex 
combination), or totally independent of them, with the latter choice reflect- 
ing an objective not commensurable with those of the two followers. Under 
our abstract formulation, both of these cases are covered. Now, depending 
on the type of hierarchy and the mode of decision making in between the 
followers, the following three possibilities emerge. 

Case (A). Two Levels of Hierarchy and Cooperative Action between 
the Followers. Consider the hierarchical structure depicted in Fig. la, but 
with N = 2, and under the stipulation that the two followers act coopera- 
tively. First, we introduce, for each y0 ~ Fo, the noninferior rational reaction 
set of the followers' group by 

gc (To) = {(yo Er t ,  yo E r2) : ] (y t  ~ r l ,  Y2 c 1"2) ~ Jl()'o, "gl, T2) 
0 0 ~Jl(YO, Yl O, yo)  and Ja(Yo, Yl, Y2)~J2(yo,  "gl, y2),  

with strict inequality for at least one i = 1, 2.} (1) 

Definition 2.1. The quantity 

inf sup Jo(y0, yl, y2) = J *  (2) 
"YOEFO ('Yl,~2)e Re (VO) 

is the optimum performance of the coordinator (DM0) in this decision 
problem, and any strategy 3'* c I'0 that achieves this performance level, i.e., 

sup Jo(Yo ~, Yl, Y2)= Jo ~ (3) 

is a hierarchical equilibrium strategy for DMO. 
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Note that, unless Rc (3'0) is a singleton, the realized performance level 
for DM0 may in fact be lower than J*  ; hence, J*  stands out as providing 
a security level for the cost of DM0. 

Case (B). Two Levels of Hierarchy and Noncooperative Action 
between the Followers. Consider again the hierarchical structure of Fig. 
la  with N = 2, but this time under the noncooperative mode of action. 
Specifically, we stipulate that, for each announced strategy of the coor- 
dinator (DM0), the followers choose their decisions under the Nash equili- 
brium solution concept. Hence, the rational reaction set of the followers' 
group, for each 3'o ~ F0, would be 

o R .  (3"0)= {(3"o ~ F1, 2/° ~ F:):J1(3"o, 3"0, Yz )<~Jl(yo, 3"i, 3o), 

I2(vo, 3o, 30) ~< J2(3"o, 30, v2), v3"1 ~ r l ,  v2 ~ r2}. (4) 

We further restrict attention to admissible Nash pairs and define the 
admissible rational reaction set of the followers' group as 

R~. (yo) = {(3"°, 3"02) ~ R .  (3"o): ~(3"1, 3"2) ~ R .  (yo) ~ Yl (3"0, 3'i, 3'2) 

<~Jt(yo, Y°t, 3"02) and JE(3"0, 3"1, 3"2)~J2(2¢o, 30, 3"2o), 

with strict inequality for at least one i = i, 2}. (5) 

Definition 2.2. The quantity 

inf sup Jo(3"o, 3'1, T2)= Jo* (6) 
3'OE FO (3'l,3"2)~Ran(Vo) 

is the optimum performance of the coordinator (DM0) in this decision 
problem, and any strategy 3'* ~ Fo that achieves this performance level, i.e., 

sup , Jo(3"o*, r l ,  v2 )=  Jo*, (7) 
(3*l,'Y2)~Ran (~ 0) 

is a hierarchical equilibrium strategy for DM0. 

Remark 2.1. As in the previous case, the realized performance level 
for DM0 may in fact be lower than J*  when Ra,(3"*) is not a singleton, 
this being the case when the Nash solution obtained at the second level is 
nonunique. The nonuniqueness is due not only to the structural properties 
of the cost functionals, but also to the informational properties of the 
problem (Refs. 7-8). This latter type of nonuniqueness can, however, be 
avoided by either restricting attention to only open-loop policies for the 
followers or by requiring the Nash solution to satisfy some further properties 
(Ref. 8). This point will be discussed further in the following sections. 
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Case (C). Three Levels of Hierarchy. In the case of the linear 
hierarchy depicted in Fig. lb,  a definition of hierarchical equilibrium 3 has 
been given in Ref. 9. We first define, for each (Y0 ~ Fo, 3"1 ~ F1) the rational 
reaction set of DM2 by 

R2(3"o; 71) ~ {Y2 ° ~ F2 : J2(3"o, 0 3"i, ~/2) ~< J2(~,o, vt ,  y2), ¥3"2 ~ r2}, (8) 

and then introduce, for each 3"0 ~ Fo, the rational reaction set of DM1 by 

Ri (yo)={3"°cFl :  sup o J I ( T ° " Y ° ' 3 " 2 )  
3'2E R2(3'o;'Y 1) 

<~ sup Jl(yo, 3"1, Y2), V3"1 e F1}. (9) 
3~2~ R2('/o;3,1) 

Definition 2.3. The quantity 

inf sup sup Jo(yo, 3'1, y2) = Jo* (10) 
vo~Fo "YlaRI("/O) v2ER2(YO;Y1) 

is the optimum performance of DM0 in this decision problem, and any 
strategy 3'0* e F0 that achieves this performance level, i.e., 

Jo(y*, yl, y2) = J0*, (11) sup . sup. 
"/laRl(3,0) "Y2~R2('Yo, ~/1) 

is a hierarchkal equilibrium strategy for DM0. 
Our objective in this paper is to obtain tight bounds for J*  in the 

three cases covered by Definitions 2.1-2.3 and when the information 
available to the decision makers is dynamic in nature (especially from 
DM0's point of view). The underlying system that gives rise to the normal 
form utilized above is assumed to be deterministic, but the dynamic informa- 
tion available to the decision makers is only partial. More specifically, we 
let rtl denote the dynamic information available to DMi, i = 0 ,  1, 2, 
throughout the decision process; and we let yi denote the value of this 
information (which may take values in finite- or infinite-dimensional vector 
spaces) after all three decision makers have chosen their strategies. Then, 
we have the loop relations 

ui = 3"i (Yi), (12) 

Yi = r l i (Uo ,  U l ,  U2), i = 0, 1, 2, 

where ul denotes the decision (control) value of DMi, and any dependence 

3 If there is some fur ther  structure on the  dynamic  decision problem, such as a difference 
equat ion describing the  evolution of state, it is possible to impose some additional restrictions 
on the  hierarchical equil ibrium solution, as in Ref. 10. Since we are working with a general  
abstract model  here,  such an extension will not  be pursued.  
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on the state is suppressed. Even though this is a very general framework, 
there are of course some implicit structural restrictions imposed on the 
loop relations (12) so that they satisfy the principle of causality. Finally, 
the vectors u~ and y~ are assumed to belong, respectively, to the vector 
spaces U~ and Y~, where the latter is taken (without any loss of generality) 
to be the full range space of ~ ;  no further structure is imposed on U.: 
and Y, 

3. Derivation of Tight Performance Bounds 

In the absence of the third decision maker (i.e., with N -- 1), all three 
definitions collapse into a single one--a  case which has been studied 
thoroughly in Ref, 1. It has been shown in that reference that the original 
dynamic decision problem can be reduced to two static (open-loop) optimiz- 
ation problems, the solutions of which readily yield J*. In the sequel, we 
investigate, via novel indirect approaches, derivation of tight bounds for 
Jo* for the cases covered by Definitions 2.1-2.3, through the solutions of 
static optimization problems. 

Case (A). Two Levels of Hierarchy and Cooperative Action between 
the Followers. For the case covered by Definition 2.1, consider the follow- 
ing two steps of optimization. 

Step 1. For tz e [0, 1], let 

f~,(Uo, ul, u2) = p-Jl(uo, ul, uz)+(1-lz)Yz(Uo, ul, u2) (13a) 

and, for fixed uo~ Uo, Yo~ Yo, and/z ~[0, 1], minimize J,(uo, ul, u2) over 
S c U1 × U2, where 

S(Uo, Yo) --a {(ut, ua) ~ U1 x U2: Yo = ~7o(U0, ul, u2)}. (13b) 

Define the (partial) optimal response set 

Ie.(uo, yo) = {(u ° , u ° ) ~ s :  L ( u 0 ,  u °, u ° ) ~L(uo, ~1, u2), V(ul ,  u2) ~ s } .  

(13c) 

Note that here uo does not depend functionally on ul or ua; it is any 
element of U0 which comprises only open-loop strategies. 

Step 2. If R,(uo, Yo) is a singleton, denote the corresponding 
unique map by T, : U0 × II0 ~ U~ x U2, and consider minimization of 
sup, Jo(Uo, T, (Uo, yo)) over (Uo, yo) e Uo x Iio. Denote any minimizing sol- 
ution pair by (u o °, y o), and denote the corresponding values of tz and Jo 
by ~ * and Yo °, respectively. 
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If Ru~(Uo, Y0) is not a singleton, define (u~, y~) and yo through the 
inequality 

jo  ~ sup sup Jo(u °, ul, u~) 
~ [ 0 , 1 ]  o o (Ul,U2)~R~(uO, Y0) 

~< sup sup Jo(uo, ul, uz),V(uo, Yo)eUoXYo. (14) 
b~E[0,1] (Ul,U2)~R~ (UO, YO) 

Theorem 3.1. Assume the following: 
(i) for each (u0, yo) ~ Uo x Y0, the set of noninferior solutions of the 

vector-valued minimization problem 

min {Jl(u0, ul, uz), J2(Uo, ul, u2)} ~ Yo = ~7o(Uo, ul, u2) 
(u~,uz)e U~× U2 

coincides with 1._J.~o.11R. (uo, yo); 
(ii) there exists a pair (u* = Uo °, y* = yo °) satisfying the requirements 

at Step 2, and the inf sup operations in (14) can be interchanged; 
(iii) there exists a 330 c Fo with the property 

inf Ji(9o, ul, uz) >J / (u* ,  ul, uz), V(ul, u2)~R.(u*, y*), 
(ul,u2)~UixU2 

(15) 
V~ ~ [0, 1], i = 1, 2, 

such that the composite strategy 

* I u*, if Yo = Y*, (16) 3'0 (yo)= 
/ Yo(yo), otherwise, 

is an element of Fo. 
Then, Jo  ° obtained at Step 2 is the optimum performance J*  of the 

coordinator DM0 in the decision problem covered by Def. 1. Furthermore,  
y* is a hierarchical equilibrium strategy for DM0. 

Remark 3.1. In the statement of Theorem 3.1, Assumption (i) basi- 
cally requires that all Pareto-optimal solutions of the related vector-valued 
static optimization problem can be  obtained by minimizing a convex combi- 
nation of Yl and J2. This places some implicit restrictions on the structure 
of the cost functionals J1 and Y2 and the constraint equations, but it is not 
an unreasonable assumption to make (Ref. 11). In the absence of such an 
assumption, the problem is still tractable, but then the parametrized scalar- 
valued optimization problem of Step 1 will have to be replaced by a 
vector-valued optimization problem. Assumption (iii), on the other hand, 
ensures that the coordinator is in a position to threaten 4 the followers by 
increasing their cost values if their past actions do not lead to the value yo ° 
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determined above at Steps t and 2. Note that the strategy 3,* is implement- 
able under the underlying assumption of causality. 

Proof  of T h e o r e m  3.1. Let To* ~ Fo be a hierarchical equilibrium 
strategy for DM0, in accordance with Definition 2.1. Furthermore, let 
(y*, ~t*) be a pair of supremizing strategies in (3). Denote the realized 
values of yo, y:, y2, after these strategies are applied, by y*, y*, y2*, 
respectively, and let 

~,8(y~)= uL w*(y~*) = uL v * ( y * ) =  b/* . 

Now, since (3'*, 3/2 ) ct.'yO J, we have from (1): 

3(3,: ~ F1, 3,2 ~ F2) such that 

r~(3,,, 3,~, 3,2)~I1(3,,, ~,*, 3,~*), 

A(v0*, 3,:, v2)-<12(vS, 3,~*, 3,*), (17) 

with strict inequality in at least one of these. 

This statement is further equivalent to 

3 (u : e  U:, u2e U2) such that 

y* = n0(u*, u:, u2), 
J~(u*, u~, b/2)<-J~(u *, u *, b/ *), 
J2(u *, Ua, u2) <-J2(u~, u *, u *), (18) 

with strict inequality in at least one of these. 

Under the first assumption of Theorem 3.1, this property can be 
restated as follows: 

3~ ~[0, 1], say~*, such that * * (u :, u2 ) minimizes 

Jw*(/go*, Ul,/./2) =].L*JI(U~, b/l, U2)+ (1--/£*)J2(U0*, ~gl, U2) 
(19) 

over U: × U2 and subject to y* = rio(u*, u,, u2). 

Hence, 

(u*, u~) ~ R.*(u o*, y*). 
Now, the pair (u*, y*) is under the control of DM0, and he can enforce 
any such solution [the latter one being a governing factor in the constraint 
yo = */dUo, u:, u2)] on the followers under the third condition of Theorem 

4 If there exist overly restrictive hard bounds on the decision variables of the leader, such a 
threat strategy will not exist, in which case J*  will be greater than J~. See Ref. 12 for a 
discussion of two-person Stackelberg problems with such constraints. 
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3.1. However, DM0 does not have control over the choice of controls from 
R~,(Uo, yo), nor does he have control over the choice of any specific value 
for tz. Therefore, a secured level for Jo will be 

Jo* = inf sup J0(y0, 3'1, y2) 
vo~Fo ('Yl,2¢2)~ Rc ('V0) 

= inf sup sup Jo(Uo, ul, u2) =jo,  (20) 
(uo,yo)~ Uo x Yo ~z~[0,1] (ut,u2)~R~.(uO, Yo) 

where, in going from the second to the third step, we have utilized the 
equivalence between (17) and (19) and the interchangeability of the inf 
sup operations. This, then, completes the proof of the theorem. Vq 

We should note that (20), in fact, gives the optimum performance (see 
Definition 2.1) in terms of the minimax (= maximum) value of an open-loop 
optimization problem without requiring existence of a hierarchical equili- 
brium strategy for DM0. 

Remark 3.2. One can easily visualize an extension of Theorem 3.1 
to the case of N followers, as depicted in Fig. la,  in which case (20) will 
be replaced by 

J*  = inf sup sup Jo(Uo, Ul . . . . .  UN), (21) 
(uo,Yo)e Uo x YO ~ ~M (u~,...,ut,;: )eRv.(uo, Yo) 

where 
yo)={(o . . . . .  L ( u o ,  u ° . . . . .  u ° )  

~< f~(Uo, ul, • • . ,  uu), V(ul . . . . .  uN) ~ S}, (22a) 

S(uo, Yo) &{(ul, •. •, Uu) s Ux x - .  • x UN: Yo = r/o(Uo, ut . . . . .  uu)}, (22b) 

N 

f~(UO,  Ul . . . . .  UU) = ~. I,~iJi(lAo, bll . . . . .  UN),  ( 2 2 C )  
i=1  

i = l  

Remark 3.3. Even though J r ,  as given by (20), provides a security 
level for DM0, it is not necessarily the performance that will be realized, 
since the followers may not choose the supremizing strategies. There exists, 
however, also a lower bound for DM0's performance, which is obtained 
by assuming that the followers will pick their strategies in the indifference 
region in a manner that is mostly beneficial to DM0. This argument readily 
leads to the value 

Jo* = inf inf inf Jo(uo, ul, u2), (23) 
(uo,Yo)~Uox Yo O.~[O,l] (ul,u2)~Ru~(uo, YO) 



JOTA: VOL. 39, NO. 1, JANUARY 1983 77 

which may also be attained. The actual realized value of Jo will always lie 
in the interval [Jo*, J*  ]. 

Case (B). Two Levels of Hierarchy and Noncooperative Action 
between the Followers. This is the case covered by Definition 2.2; and, 
in order to avoid informational nonuniqueness of the Nash solution at the 
second level of hierarchy, we assume at the outset that the two followers 
have access to only open-loop information. 5 Then, the following two steps 
of optimization will lead to the optimum performance value for DM0. 

Step 1. Let S(uo, Yo) be defined as in (13b). Determine the sets 

/~,dUo, Yo) ~ {(u °, u °) ~ S: arl(Uo, u °, u °) ~Jl(Uo, ut, u°), 
o o :2(Uo, U 1, U2)-J2(uo, u °, u2), V(uI, u2)~ S} (24) 

and 

t~an (UO, A • 0 YO) = {(Ul, U O) e R.(Uo, Yo): 3(ul, u2) e /~(uo ,  Yo) ~Jl(uo, ul, u2) 

<~Jl(uo, u°,u °) and Y2(Uo, Ul, U2)<~J2(uo, u °, 0 /'/2), 

with strict inequality for at least one i = 1, 2}. (25) 

Step 2. If/~..(Uo, yo) is a singleton for every pair (uo, yo), denote 
the corresponding unique map by T: Uo x Yo~ U1 x U2, and consider the 
minimization of Jo(Uo, T(uo, yo)) over (uo, yo) e UoX Yo. Denote any 
minimizing solution pair by (u °, yo°), and the corresponding value of 1o by 

:~ =:o(u °, r(u  °, y~)). 

If/~a,(Uo, Yo) is not a singleton, define o o (uo, yo) and Jo ° through the 
inequality 

J00 ~ s u p  O J0(U00' Ul, b/2) 
(ul.uz)e~..(uo°,yo) 

~< sup Jo(uo, ul, u2), V(uo, Yo)~ Uo x Yo. (26) 
(u 1.u2)cRa. (Uo,Yo) 

Theorem 3.2. Assume the following: 
(i) there exists a pair (u* ' * = Uo, yo = yo °) satisfying the requirements 

at Step 2, and the inf sup operations in (26) are interchangeable; 

5 Yet another approach that avoids informational nonuniqueness is to adopt the closed-loop 
Nash solution concept under the delayed commitment mode of decision making (see Ref. 
13, Chapter 6), 



78 JOTA: VOL. 39, NO. 1, JANUARY 1983 

(ii) there exists a g0 s Fo with the property 

inf J~(~o, Ul, u2)>Ji(bl~o, Ul, U2), 
(ul,ua)~ U~×Uz 

V(ua, u2)~K,~,(u*, y*), i = 1 , 2 ,  
(27) 

such that the composite strategy 

~u~, if = yo*, Yo 
3'* (Yo) = ('~o(Yo), otherwise, 

(28) 

is an element of Fo. 
Then, yo obtained at Step 2 is the optimum performance (Y*) of the 

coordinator DM0 in the decision making problem covered by Definition 
2.2. Furthermore, 3'* is a hierarchical equilibrium strategy for DM0. 

Proof. The proof parallels that of Theorem 3.1, with the only 
difference being that the set of noninferior solutions at the second level of 
hierarchy is now replaced by the set of all admissible Nash equilibrium 
solutions. Note that J0*, as defined by (6), will be equivalent to 

J* = inf sup Jo(uo, ul, u2), (29) 
(uo,yo)e UoX Yo (ul,u2)ER.~ (uo, YO) 

which is also valid even if a hierarchical equilibrium strategy does not 
exist. E3 

Remark 3.4. An extension of Theorem 3.2 to the case of N (instead 
of 2) followers is immediate (as in the case of Theorem 3.1, discussed in 
Remark 3.2). We simply replace (29) with 

J*  = inf sup Jo(uo, ul . . . . .  uN), (30) 
(Uo,Yo)~ [-tO× YO (Ul,'",uN)~Ran(UO,YO) 

where/~,,(uo, Yo) is now defined as a subset of S(uo, yo) given by (22b), 
comprising all admissible Nash equilibrium solutions. We omit further 
details of this extension. 

Remark 3.$. A counterpart of Remark 3.3 will also be valid here. 
The actual realized value of Jo will always lie in the interval [-To*, J*  ], where 

Jo* = inf inf Jo(Uo, ul, u2), (31) 
(UO,Yo)EUo×Yo (Ul,U2)~an(Uo, YO) 

and J*  is given by (29). 
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Case (C). Three Levels of Hierarchy. This is the case covered by 
Definition 2.3 and depicted in Fig. lb. Consider the following three steps 
of optimization. 

Step 1. Minimize Y2(uo, ul, u2) over $2 C [/2, where 

S2(uo, yo, btl, Yl) ---~a {U2 E U2: Yo : ~o(Uo, Ul, b/2), Yl -= "r/1(Uo, Ul, U2)}, 
(32) 

UoC Uo, Yo~ 1Io, ulE U1, yl~ Y1. 

Assume that a solution exists and is unique, and denote the corresponding 
map by 

T2: UoX YoX U1 x YI-'U2. 

Step2. Now, consider the minimization ofJl(uo, ul, T2(uo, Yo, u~, yl)) 
over $1 C U1 x YI, where 

Sl(uo, Yo)&{(ul, yt)~ U1 x YI: Yo = 17o(Uo, ut, T2(uo, Yo, ul, Yl))}, 

Uo s Uo, Yo e Y. (33) 

Let 

K~(uo, yo) = {(u °, yl °) ~ s l :  J~(uo, u °, T2(uo, yo, u~, yO)) 

~Jl(uo, ul, T2(uo, Yo, ul, Yl)), V(ul, Yl) ~ $1}. (34) 

Step 3. If Rl(uo, Yo) is a singleton for every pair (Uo, Yo)~ Uo x I1o, 
denote the corresponding unique map by 

TI : Uo X Yo-* Ul x Y~ 

and its restriction to U~ by 

Tu:  UoX Y0-~ U1. 

Consider the minimization of Yo(Uo, Tll(Uo, yo), Tz(uo, Yo, Tt(uo, Yo)) over 
• 0 (uo, Yo) s Uo x Yo; denote any minimizing solution pair by (uo, yo°), and the 

corresponding value of Yo by 

Jo ° =Jo(u °, Tii(u °, yo°), T2(uo, yo, Tl(uo, yo))). 

If/~l(Uo, yo) is not a singleton, define (u °, yo °) and jo  through the 
inequality 

jo ° _a_ sup o Jo(u °, ul, T2(u °, yO, ul, Yl)) 
(ul,Y 1)~J~ I(UO,Y 0 ) 

~< slap Jo(tto,  Ul, T2(uo, Yo, Ul, Yl)), V(t20, yo)~ U o X  Yo. (35) 
(U I,y 1)~J~ I(UO,YO) 
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T h e o r e m  3.3. Assume the following: 
(i) there exists a pair (Uo* = u °, y* = yO) satisfying the requirements 

at Step 3, and the inf sup operations in (35) are interchangeable; 
(ii) there exists a ~o e Fo with the property 

inf 3.i(~o, Ul, U2)>3.i(U*o,u*,T2(u*,y*,u*, * yl )), 
(u:t,u2)~ Ul × U2 

Wux* ~/~1(u0., y•), i = 1, 2, 
(36) 

where y 1" satisfies the causal relationship 

y* = "q,(u *, u*, T2(u0*, y *, u~, y*)), 

such that the composite strategy 

I u0*, if yo = y0*, 
3"* (yo) = / q0(y0), otherwise, 

is an element of Fo; 
(iii) there exists a ~1 ~ F1 with the property 

(37) 

inf J2(U*,3"I, u2)>3.2(U*o,U*,A T2(uo,* Yo,* ul,yl)),* * (38) 
U2E 82 

where y* is as given before, such that the composite strategy 

3"~(yl)_/u~, if yl =y*,  
- t ~i(yl), otherwise, (39) 

is an element of F1. 
Then, fo  ° obtained at Step 3 is the optimum performance (3"*) of the 

coordinator DM0 in the decision making problem covered by Definition 
3.3. Furthermore, 3'0* is a hierarchical equilibrium strategy for DM0. 

Proof. Let 3'* ~ Fo be hierarchical equilibrium strategy for DM0, in 
accordance with Definition 3.3. Furthermore, let (~/*, 3'*) be a pair of 
supremizing strategies in (11). Denote the realized values of Yo, yl, y2, 
after these strategies are applied, by yo, y 1, y*, respectively; and let 

.rS(yo)=u*o, = u* ,  u*.  

Now, since 3"* ER2(3"8, 3'*), we have, from (8), 

* * * \ ~ f  / * f2(Yo, ~/1,3"2 ) ~ 2t3~o, y~, 3t2), V3"2 E F2. 
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This inequality is equivalent to the following statement: 

u* = 3'* (y*) minimizes J2(u*, u ~, u2) over u2 ~ U2 

and subject to the constraints 

y8 =no(u*, u L  = us). 

Hence, 

u2 ~S2(Uo, y*);  Yo,/21,  

and, by the assumption made at Step 1, u* is uniquely defined by 

u* = T2(uo, Yo, u*, y*).  

Now, the pair (u*, y*) is partially under the control of DM1, in the sense 
that he can enforce any such solution on DM2 provided that the constraints 

y * -  * * T ' u *  * * * -rlo(Uo, Ul, 2t o, yo, u t , y l ) ) ,  

y1*- * * T~u*  * u* v *~ - 'q1(Uo, Ul, ~t o, yo, 1 , . 1 ~  

are satisfied. Therefore, the pair (u *, y* ) has the property that it minimizes 

Jx(Uo*, ul, T2(u*, y*, ut, Yl)) 

over (ul, yl) ~ U1 x Y1 and subject to 

y* = no(U*, ul,  T2(u *o, y*, ul, Yl)), 

Yl =rll(u*,  ul,  T2(uS, * * Yo, Yo, ul, Yt)). 

The latter constraint is, in fact, an identity because of the choice of T2, 
and hence 

(uL * yo). 

Furthermore, this is an enforceable solution on DM2, by the third assump- 
tion of Theorem 3.3. 

The pair (u*, y~'), on the other hand, is completely under the control 
of DM0, which he can enforce directly on DM1 and DM2 under Assumption 
(ii) of Theorem 3.3, and also indirectly on DM2 under Assumption (iii). 
But he has no control over D M I ' s  choice from - * * Rl(uo ,  Yo ), and therefore 
a secured level for .To is 

J *  = inf sup sup Jo(`/0, 3q, "/2) 

j o  
= inf sup JotUo, ul, T2(uo, Yo, uI, Yl)) = o. (40) 

(UO, YO)E [70 × YO (Ul, Yl)ERI(uO, YO) 

This completes the proof of the theorem. [] 
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It should be noted that the latter expression (40) provides an optimum 
performance level for DM0 without requiring existence of a hierarchical 
equilibrium strategy. 

Remark 3,6. The assumption made at Step 1, concerning the unique- 
ness of the solution of the static optimization problem, seems to be essential 
for the decomposition of the original dynamic problem into a sequence of 
static optimization problems, as presented here. 

Remark 3.7. As a counterpart of Remarks 3.3 and 3.5, the lower 
bound on the realized value of Jo will be 

Jo* = i n f  in_f Jo(Uo, Ul,  r 2 ( u o ,  yo,  Ul ,  y l ) ) .  (41) 
(uo,Yo)e UoX Yo (u 1,Yl)~Rl(UO.yo) 

4. IHustrative Numerical Example 

To illustrate the results of Section 3, consider the three-stage dynamic 
decision problem described, in extensive form, by the scalar state equation 

x(1)=x(O)+u2, x(O)= 1, 

x(2) =x (1 )+u l ,  (42) 

x(3) =x(2)+Uo, 

and the state observation equations 

yl = x(1), y0=x(2).  

In other words, DM2 acts at Stage 0, with control variable u2, and knows 
only the value of x (0), which is also known by DM1 and DM0. DM1 acts 
at Stage 1, with control variable Ul, and knows x(l).  Finally, DM0 acts at 
Stage 2, with control variable uo, and has access to x(2) [but not to x(1)]. 
The cost functions are taken as 

J2 = Ix (3)12 + 2 [ u d  ~, 

Yl = [x (3)] 2 + [u 1] 2, (43) 

Jo = ~rll +I2]  + [u0] 2. 

By eliminating the state variables, we obtain the equivalent representation 

J 2  = I1  Jr- U0 -I- U 1 -}- U2] 2 -t:- 2[u2] 2, 

J1 = [t + uo + u i + u2] 2 + [u 1] 2, (44) 

Jo = [1 + uo + u i + u2] 2 + [uol 2 + ~[u 112 + [ u d  2, 
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where 

and 

U0 = "Y0(Y0), Ut ----- T I ( y l ) ,  U2 = c o n s t ,  

Yo=~o(Ul, u2) = l + ul + u2, 
(45) 

y,  = rll(u2) = 1 + u2. 

The optimum performances for DM0, in the three cases treated in Section 
3, is computed as follows. 

over 

Case (A). Step 1. For I* e [0, 1], the minimum of 

Step 1. For > ~ [0, 1], the minimum of 

f~ = [1 + uo + u 1 + u2] 2 + t* [u 1] 2 + 2(1 - t*)[u2] 2 

S = {(ul, u2) E ~  xY~: yo=  1+ul+u2},  (46) 

and for fixed (uo, yo) ~ ~ × Y~, is attained uniquely at 

0 u ° = 2 ( 1 - t , ) ( y o -  1 ) / ( 2 - F ) ,  u2 = / * ( y o -  1 ) / (2 - /~ ) .  

Therefore,  

T,~(Uo, Yo) = [2(1 - /~) ,  U ](Yo- I ) / (2  - /~) .  

Step 2. We have to consider the minimization of 

max {[Uo + yo] 2 + [Uo] 2 + 2[(1 - / z )2 / (2  - / , )2](yo - 1) 2 
u.~[O,1] 

+ [t~ 2 / ( 2  - f* )2](yo - 1) 2} 

over (Uo, Yo) ~ a~ x ~ .  This rain-max optimization problem indeed admits 
a saddte point which is given by 

u* - - - ~ ,  y , = 2 ,  /z* = 1, 

and consequently, 

=~=-Jo. 

A lower bound on the realized value of Jo, as given by (23), is obtained 
by taking 

I 2 1 
Uo = - - g ,  Y o = ~ ,  /-* = ~ ,  

leading to 

jO ~ ~ 1 
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which is, in fact, the lowest possible value that Jo can attain. An appealing 
hierarchical equilibrium strategy y* (yo) for DM0 would, of course, be the 
one that secures the cost level of 

in case the followers select 

but also realizes the lower bound 

in case the followers' choice is 

1o* =~ 

/~=1 ,  

J o *  = 1 

1 

It is not known, at this stage, whether such a strategy exists for DM0 and 
how it can be computed. 

It should be noted that all conditions of Theorem 3.1 are fulfilled in 
this example: Assumption (i) holds because both Ja and Jz are strictly 
convex on S(uo, yo); Assumption (ii) holds as shown above (since an explicit 
saddle-point solution has been obtained); and Assumption (iii) holds by 

taking ~o(yo) = Kyo, 

where K > 0 is a sufficiently large number. 

Case (B). Here, we consider only open-loop Nash solutions at the 
second level of hierarchy, in order to avoid any informational nonun- 
iqueness, 

Step 1. On the constraint set S(uo, Yo), 

Yl = [u o + Yo] z + [u t] 2, J2 = [Uo + yo] 2 + 2[u2] z, 

with 
ul+u2=Yo-1.  

Therefore, 
/~ (Uo ,  3,o) = S(uo, yo), 

where the latter is given by (46). Furthermore, 

/~a, (Uo, yo) = {(u~, u2) e S: min(yo - 1, 0) <~ ul ~< max(yo-  1, 0)}. 

Step 2. On/~an(U0, YO), -TO Can be written as 

L -= [uo + y 012 + [uo] 2 + ½[u ~]2 + [ y o -  1 - u ~]2, 

with 
A min(yo-  1, O) ~< ul ~< max(yo-  1, O) ~ ~71. 
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It now easily follows that 

sup_ Jo = max fo=[uo+Yo]2+[Uo]2+[yo-1] 2, 
(~l,U2)Egan g l ~ ' ~ l ~ l  

and hence Ineq. (26) leads to the unique soiution 

= yo* - - 2  

with the optimum performance level being 

Note that this is the same as the optimum performance level obtained in 
Case (A) under cooperative action of the followers. Moreover, the value 
of J0* is also the same as in Case (A), i.e., 

Both conditions of Theorem 3.2 are satisfied in this example; the 
second one can be shown again by taking 

~I(Yo) --Kyo, 

where K > 0 is sufficiently large. 

Case (C). Step 1. The set S2(uo, Y0, Ux, yl) is a singleton 

S2={u2=y~-l},  

provided that a hierarchical equilibrium solution exists for the problem. 
Note that we are not using the second constraint that involves ~0, since it 
is redundant. Hence, the minimization problem at this step is a trivial one, 
leading to 

U2 = T z ( y l )  = Yl - 1. 

Step 2. The constraint set S1 is 

81 ={(ul, y t ) E ~  x ~ :  ul = yo-yx}, 

and on this set Jl(uo, ul, T2(yl)) can be written as 

J~I(U0, Ul,  Y0) -= [U0 + Y012"+- [/gl] 2, 

whose unique minimum is attained at 

U 0 ~- Zl t ( /go ,  Yo) ~--- 0 ,  Y 10 ---~ T12(b/o, Yo) = yo. 

Step 3. We now consider the minimization of 

Jo(uo, Tll, T2(uo, yo, Ttl, T~2(yo)))= [uo+yo]2+ [uo]2 + [yo - 1] 2, 
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over (u0, yo)~ ~ × ~ .  The unique solution is 

yo*=L 

with the corresponding opt imum performance level being 
y o  ° i . 

= ~ = J o ,  

which is again the same as the ones obtained in the other two cases. 
However,  the performance here is more robust, since the lower bound is also 

Jo. = 

All conditions of Theorem 3.3 are satisfied here,  with 

"~(yl) = Kly l ,  ~o(Yo) = K0Y0, 

where K1 > 0, Ko > 0 are sufficiently large numbers. 

5. Conclusions 

This paper has presented an indirect method for derivation of perform- 
ance bounds for (N + 1)-person deterministic hierarchical decision prob- 
lems with partial dynamic information, N + 1 > 2 .  This indirect method 
converts the original, highly nontrivial dynamic problem into a sequence 
of static optimization problems, whose solut ions yield the optimum 
performance bounds sought. Even though the derivation of appealing 
hierarchical equilibrium strategies still remains a challenging task 6 for the 
general class of problems, the bounds obtained in this paper serve to 
compare performances of some simple suboptimal strategies for the coor- 
dinator against the best performance achievable. 
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