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This paper presents a general method for derivation of a
tight lower bound on the Stackelberg cost of the leader in
general two-person deterministic dynamic games with partial
dynamic state information. The method converts the original
dynamic Stackelberg problem into two open-loop optimization
problems whose solutions can readily be obtained using the
standard techniques of optimization and optimal control the-
ory. When applied to the class of linear-quadratic dynamic
games with partial dynamic information, defined on general
Hilbert spaces, each one of these open-loop optimization prob-
lems becomes a quadratic programming problem with linear
constraints, thus allowing for' an explicit computation of the
Stackelberg cost value. The paper also includes a specific
example, illustrating application of these results on a discrete-
time linear-quadratic dynamic game wherein the leader has
access to partial state information.

1. Introduction

The Stackelberg solution concept, first intro-
duced by H. von Stackelberg [1] for static games,
and then extended and applied to dynamic games
in the papers [2-4], has recently attracted consid-
erable attention in the literature after the develop-
ment of an indirect method to obtain the solution
of dynamic games with closed-loop information
structure. The essence of this indirect method in-
troduced in [5] and [6] for the Stackelberg solution
of two-person deterministic dynamic games is the
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following: First find a two-person team problem
whose optimal team cost provides a tight lower
bound for the leader's Stackelberg cost in the
dynamic game, and then determine a particular
closed-loop representation of the leader's optimal
feedback solution in the team problem, which will
force the follower to the strategy that minimizes
the team cost, even though he is actually minimiz-
ing his own cost functional.

Within the context of linear-quadratic dynamic
games defined in discrete time, two different team
problems have been introduced in [6], depending
on whether the follower acts at the last stage of the
game or not. For the latter case the related team
problem is the one which is determined completely
by the leader's cost function so that, under certain
conditions on the parameters of the game, the
leader can force the follower to a strategy which
jointly minimizes his (the leader's) own cost func-
tion. An appropriate strategy for the leader to
accomplish this is a linear one-step memory repre-
sentation of his feedback team strategy, which can
be determined recursively. Other, more com-
plicated (nonlinear and nondifferentiable), one-
step memory representations are also possible [7],
and these sometimes extend the region of applica-
bility (in the parameter space) of this indirect
approach.

In the former case, on the other hand (i.e. when
the follower also acts at the last stage of the game),
the related team problem has a 'reduced' cost
function which is obtained from the leader's cost
function by taking into account the optimal re-
sponse of the follower at the last stage. This opti-
mal response is incorporated in the follower's cost
function so that we now also have a 'reduced' cost
function for the follower. In this new game the
follower does not act at the last stage, and there-
fore the problem becomes similar to that discussed
earlier. For the same class of (linear-quadratic)
dynamic game problems, Tolwinski has obtained
in [7] a different class of 'reduced team' problems
(or rather the minimum value of these reduced
team costs) for the case when the follower has
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extra degrees of freedom in influencing the state
variable, which cannot be 'detected' by the leader
through his observation of the state.

The indirect method of [6] was then applied to
continuous-time linear-quadratic differential games
[8-10] and to stochastic two-person games [11,12]
and later extended to many (3)-player determinis-
tic [13] and stochastic [14] games. For an interpre-
tation of these results from the viewpoint of incen-
tives, and with applications in economics and so-
cial choice theory, we refer the reader to [15].

In the present paper, we first discuss (in the
next section) derivation of the Stackelberg solution
for general dynamic games as a closed-loop repre-
sentation of the team solution (that necessarily
involves memory, whenever a 'complete detectabil-
ity condition' is satisfied, in which case the Stac-
kelberg cost (of the leader) coincides with the
minimum value of the leader's cost function. We
then present a general method which leads to a
tight lower bound on the Stackelberg cost of the
leader whenever the complete detectability condi-
tion is not satisfied. This indirect method is valid
for a sufficiently large class of dynamic games
(such as linear, nonlinear, discrete-time, continu-
ous-time, etc.) and when the dynamic information
available to the leader is not necessarily full state
information, and it involves the solution of two
open-loop optimization problems (cf. Sections 3
and 4). When this method is applied to the special
class of linear quadratic dynamic games with par-
tial dynamic information, the Stackelberg"cost
value (of the leader) is obtained through the solu-
tion of two quadratic programming problems with
linear constraints, defined on general Hilbert
spaces (d. Section 5).

2. Stackelberg solution of dynamic games with
perfect state information

Consider a two-person dynamic game in normal
form, described by the cost functionals JI(YI' '(2)
and Ji 'II' Y2) where the strategies YIand Y2belong
to a priori determined strategy speces I', and f2'
respectively. If Player 1 (P 1) is the leader and P2 is
the follower, an extended definition of the Stackel-
berg solution which also accounts for nonunique
responses of the follower is as follows [6]:

For each YIE fl' first introduce the rational

reaction set of the follower by

R(y,)= {y~ Ef2:J2(YI,yn";;,J2(YI'Y2)'

'tIY2 Ef2}. (1)

Then a strategy yt E I', is said to be a Stackelberg
strategy of the leader if

supJI(Yt,yJ";;SUpJ.(YI,Y2)' 'tIYIEfp (2)

where the supremum is taken over Y2E R( yn on
the left-hand side (LHS) of (2) and over '12E R( 'II)
on the right-hand side (RHS). The quantity on the
LHS is known as the Stackelberg cost of the leader,
and is equivalently defined as

Ii =inf sUpJI(YI,yJ= sup J,(yi,Y2)' (3)
r, R(y,) R(y,*)

It is a well-established fact in the literature that
any direct approach towards the solution of this
problem meets with formidable difficulties,
whenever the leader has access to dynamic in-
formation [3-6]. An alternative proposed in [6] to
solve this problem involves two steps: (1) De-
termine (through some indirect methods) the
Stackelberg cost Jt of the leader, and (2) find a
strategy for the leader that leads to realization of
that cost level by also taking into account rational
responses of the follower.

One natural lower bound for Ji is clearly the
infimum of JI over the product set I', X f2, i.e.

(4)

Let us now assume that this infimum is actually
achieved (as a minimum), and let f/ C fi (i = 1,2)
be equivalence classes of strategies Y/ with the
property

JI'= inf J,(y.,Y2)=JI(y:,yi),
r, xr,

'tIy/ E I,', i= 1,2. (5)

These equivalence classes are, in general, infinite
sets if the dynamic game under consideration is an
infinite game. Then we have the following proposi-
tion.

Proposition 2.1. If there exists a yt En such that

{Y~Ef2: infJ2(Yi,Y2) =J2(y(,yn} Cf~,r,
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then yi constitutes a Stackelberg strategy for the
leader.

If the requirement of Proposition 2.1 is satis-
fied, then this implies that the leader can force the
follower to play in such a way so as to globally
minimize his own cost functional, even though he
(the follower) intends to minimize his (possibly
quite different) cost functional. Let us now in-
vestigate the possibilities for the leader to adopt
such a powerful position. Firstly, let us introduce
some notation and terminology:

Let 1/1 and 1/2 denote the information available
to PI and P2, respectively, during the course of the
game, and let u and v denote their control (deci-
sion) vectors (for PI and P2, respectively), taking
values in some abstract vector spaces. Then, we
clearly have the relations

U=YI(1/I), V=Y2(1/2)' (6)

Since, in general, 1/1= 1/1(U,v,~) and 1/~ = 1/2(U, v,
0, where ~ is some primitive variable, (6) can be
written, under resonable assumptions, as

(7)
which we may call open-loop relations, as opposed
to closed-loop relations (6). Now what makes f/
(defined earlier by (5» in general an infinite set, is
the redundancy of information embedded in f;.
For a minimization problem which is free of such
informational redundancy, such as an open-loop
optimization problem, one may expect at most a
finite number of elements in each corresponding
equivalence class; here, we assume that there exists
only one in the form (7) (which is justified if J1 is
strictly convex in terms of the decision vectors).
Then there is only one strategy in f/ that depends
only on ~, which we denote by y/. Furthermore,
for the class of deterministic dynamic games, which
we shall henceforth be dealing with, we may take ~
to be the initial state of the game (denoted xo)
which is known by both parties.

The assumptions that we have made so far are
reasonable and justifiable. Now we make two as-
sumptions which are not that reasonable and which
may fail for some important classes of determinis-
tic dynamic games:

Assumption A. The leader can detect exactly the
control value of the follower through his information,
i.e. the inverse image of1/l(u,·, xo) exists for every
u and xo'
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Before stating the second assumption, we first
introduce the following terminology: If (to' tf]1
denotes the interval on which the dynamic game is
defined, and s is chosen such that to < s < tf' let
Yls (respectively, YI-s) denote the restriction of a
strategy YI E fl to the interval (to' s] (respectively,
(s, If]) with the corresponding restricted strategy
set being fls (respectively, fl-J. Further write
YI = lr.. YI-s]'

Assumption B. For the dynamic game defined on
(to' tf] there exists an s (to < s < tf) such that P2
does not act throughout the interval (s, 1]' and there
exists a 11-s E fl_,. such that, with 11 = [Y:s' 11-s],

(8)

(Note that Assumption B implies that the leader
has the ability to make the follower's cost function
sufficiently large, by his actions, after he com-
pletely 'detects' the follower's control value.)

Proposition 2.2. Under Assumptions A and B, there
exists a Stackelberg strategy for the leader satisfying
the hypothesis of Proposition 2.1, namely

if v = yi(xo),
otherwise,

(9)

where Y: is any element of n, and 11 is defined by
(8).

Proof. Firstly, note that yi En, by Assumption A
and the fact that it minimizes JI(YI> yi) over fl'
Secondly, it forces the follower to play v = yi,
since otherwise the cost incurred to him under the
strategy u = 11( 1/I) is larger, by Assumption B.

Before discussing the implications of this result,
let us consider a specific example to illustrate the
underlying idea.

Example 2.3: Consider the 2-stage scalar determin-
istic dynamic game described (in extensive form)
by the state equations
xI=XO-v,
x2 =xl-u
and cost functionals 2

JI=(X2)2+2u2+fiv2, s>«.

(10)

( IIa)

) Here (to. tf Istands for both the continuous and discrete time
interval.

2 Here, by an abuse of notation, we denote the cost functionals
of the game in extensive form again by J) and J2.
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where PI (the leader) controls u as a function of Xo
and xI' i.e. u = YI(Xp xo), and P2 controls v as a
function of XO' i.e. v = yixo); hence, YI E I', is
any measurable mapping of IR X IR into IR and
Y2 E f2 is any measurable mapping of IR into IR.

The minimization problem leads, in this case, to
the equivalence classes

n = {YI Efl: YI(Xl,XO) =[/3/(3/3+2)] xo},
( 12a)

fi = {yi(xo) =[2/(3/3+2)] xo} (12b)

where

X: ~ [3/3/ (3/3+ 2)] X 0 . (l2c)

Note that n is an infinite set, whereas fi is a
singleton. The corresponding (absolute minimum)
value of JI is

J/ =[2/3/(3/3+2)] x~.

Now, using the notation introduced earlier, the
optimum open-loop strategies (y:, yi) associated
with this problem are also unique and are given by

y:(xo) =[/3/(3/3+2)] XO' (13a)

yi(xo) = [2/ (3/3+ 2)] xO' (l3b)

Furthermore, Assumption A is clearly satisfied,
and Assumption B is also satisfied, which can be
seen by simply taking YI(XO)= -kxo for k>O.
Hence, the hypotheses of Proposition 2.2 are
satisfied, and we can therefore declare (9) as a
Stackelberg strategy for the leader, which can be
written, in view of the relation v = Xo - X I' as

*( )_{[/3/(3/3+2)]XO
YI XI' Xo - -kxo

if XI =.xL (14)
otherwise,

where x\ is defined by (12c) and k is any positive
number. 3 It should be noted that here we have
taken the unique open-loop element y: of fit as a
particular strategy Y:; other possibilities (such as
y:(xl, xo) = 3XI) also exist-there is in fact an
infinite number of such choices.

To recapitulate,
(I) For the dynamic game described by (10)-

(11) and under the closed-loop information pat-
tern, a Stackelberg solution exists for all values of
/3.

3 This result is in fact valid whenever k> - 1+ /8/13 .

(2) The Stackelberg cost of the leader is equal to
the global minimum of his cost function (obtained
by cooperative action of the follower), even though
the follower seeks to minimize his own (different)
cost functional.

(3) The leader's Stackelberg strategy is a repre-
sentation of his optimal feedback strategy in the
related team problem described by (5), and it
necessarily involves memory (a feedback strategy
for PI, which is independent of xO' cannot be a
Stackelberg strategy).

(4) The Stackelberg strategy of PI is non unique
(parameterized, in this case, by a positive scalar
k), but the optimal response of P2 to all these
strategies of PI is unique (and independent of k).

(5) The Stackelberg strategy of the leader, as
given by (14), is not even continuous; this, how-
ever, does not rule out the possibility for existence
of continuous (and differentiable) Stackelberg
strategies.

(6) The strategy (14) may be viewed as a threat
strategy on part of the leader, since he essentially
threatens the follower to worsen his cost if he does
not play the optimal team strategy (13b).

The general solution presented in Proposition
2.2 may lack some desirable properties; such as
continuity, differentiability, as exemplified above
within the context of Example 2,3, but it neverthe-
less provides a verification of the possibility that
the easily computable bound Jl

t can in fact be
realized as the Stackelberg cost J'(. Hence, once it
is known that the bound in (4) is tight, under the
given information structure, then one can refer
back to Proposition 2.1 and seek to determine a
YI* En with some more appealing properties than
those possessed by (14). Carrying out such a pro-
cedure for the dynamic game of Example 2.3, if we
restrict our analysis to linear strategies for PI, we
first observe that any such strategy in n can be
written as (cf. [6])

YI(XI,XO)=3XI +p(XI- 3:!2XO) (15)

where p is a scalar parameter. To determine the
value of p for which (IS) constitutes a Stackelberg
strategy for the leader, we have to substitute (15)
into J2, minimize the resulting expression over
Y2 E f2 by also utilizing (10), and compare the
argument of this minimization problem with the
strategy (l3b). Such an analysis readily leads to



T. Basar / A general theory for Steckelberg games with partial state information

the unique value

P=1-1/f3 (16)

provided that f3 =t= O. Hence, the linear strategy
(15), together with the specific value of p as given
above, also constitutes a Stackelberg strategy for
the leader, provided that f3 =t= O. For the case f3 = 0,
it can be shown by mimicking the analysis of [16,
p. 23] that no continuously differentiable Stackel-
berg strategy exists for the leader; so, in this case,
we have to utilize nondiferentiable strategies like
(14).

A natural question that comes into mind now is
whether JI

I always constitutes a tight lower bound
for J~; the reply is "no" since Assumptions A and
B that lead to Proposition 2.2 may, at times, not
be satisfied. One such case occurs in discrete-time
finite stage games when the follower also acts at
the last stage; for such games the leader cannot
detect (through his state observation) the follower's
action at the last stage and therefore cannot en-
force his team solution. However, this problem is
also tractable, as discussed in [6], since it is possi-
ble to define a 'reduced' team problem for the
leader (by taking into account possible rational
responses of the follower at the last stage) whose
optimal cost may provide a tight lower bound for
Jr For an illustration of this approach, within the
context of an extended version of Example 2.3, we
refer the reader to the conference paper [22].

There is still a large class of deterministic dy-
namic game problems, however, for which a reduc-
tion to a new game satisfying Assumptions A and
B is not possible, in particular if the leader does
not have access to full state information. For such
problems a new technique has to be developed in
order to determine the Stackelberg cost Jt, and
this is the topic of the remaining sections. Before
dealing with the general problem, we first con-
sider, in the next section, a 2-dimensional 2-stage
dynamic game to illustrate the difficulties encoun-
tered in obtaining Jt when the leader has access to
partial dynamic information, and to motivate and
introduce our new approach to this clas of prob-
lems.

3. A dynamic game with partial state infonnation

Consider the 2-stage 2-player dynamic game
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characterized by the 2-dimensional state equation

XI =xo -v, Xo =~(l,I)',
x2 =xI - (I,I)'u, (17)

and cost functionals

J = X' X + u2 + v' ( 2 0) V
I 2 2 0 I '

J2=X;(~ ~)X2+V'(~ ~)v.
(ISa)

(ISb)

Here Xi is the 2-dimensional state vector, ~ is a
known scalar parameter, v is the 2-dimensional
control vector of P2 (the follower) who acts at
stage 0, and u is the scalar control variable of PI
(the leader). The value of the initial state xo, as
given above, is known by both players, and in
addition PI has access to the following partial
state information at stage I:

y= (1,1) XI' (19)
Therefore, PI's strategies will be of the form u =
YI(Y) where YI E I', is any measurable mapping of
R into R, whereas P2's strategies will be constants,
i.e. V=Y2 ER2 =r2.

Let us first investigate whether Assumptions A
and B are satisfied for this problem. In view of the
discussion thet led to Proposition 2.2. in Section 2,
we first observe that the leader can actually threa-
ten the follower to make his cost function arbi-
trarily large (by simply picking YI(Y) = k, where k
is arbitrarily large); therefore Assumption B is
satisfied for this problem. But for this threat to be
implementable, PI should be able to detect, at
stage 1, what P2 has actually done at stageO since,
otherwise, a strategy of the form (9) does not exist
-and this is not the case here. The leader has a
single channel which does not permit him to ob-
serve the exact value of v; i.e. Assumption A,
henceforth referred to as the complete detectability
condition, is not satisfied here. All PI can observe
is the value of y (which he may wish to force to a
given or precalculated desired value), but there are
several choices for v which would lead to the same
value for y. In fact, it can be shown that (see [22])
the leader cannot force the follower's actions to
lead to the team value yl = ft ~ of y,and there-
fore, the minimum team cost cannot be achieved
in this problem, i.e.

ne =J] <Jt. (20)

Another point worth emphasizing here is that. we
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cannot know a priori whether there exists a Stac-
kelberg strategy for the leader in this problem, but
the Stackelberg cost Ji is always a well-defined
finite quantity. Therefore, our task now is to de-
termine Ji.

An indirect approach to determine J/
Let us assume, at the outset, that there exists a

Stackelberg strategy for the leader, denoted by
yi E r" and an optimal response of the follower,
denoted by v* E r2, leading to the Stackelberg
cost J,( yi, v*) = Ji; furthermore, let us denote the
realized value of y, after utilization of v = v*, by
y*. Since

v*=arg min J2(yi(y),v),
vER2

(21)

and since the only dependence of u = yi( y) on v is
through y, the optimization problem (21) faced by
the follower is equivalent to the constrained opti-
mization problem

v* = arg min J2( yi(y*), v) (22)
vES

where

s= {VER2:y=2~-(I, l)v=y*}. (23)

Letting yi(Y*) = u* (which is a constant, yet to be
determined), we solve this minimization problem
and obtain v* uniquely as a function of u* and y*:

v* = Hu* - 4y* + 7t -u* - 2y* + 50'. (24)

Now, by substituting this into J" we arrive at the
expression

J,(u*, v*) = F(u*,y'*) = (h* - iu* - H)2

+ (1-y* - *u* + H)2 + U*2

+2(tu* - h* + U)2

+ (tu* + 1Y* - U)2, (25)

and the minimum value of F( u", y*) over all u*
and y* should equal Jt. Carrying out the minimi-
zation we obtain

y* ~ 1.6393~, Ji~ 0.540ge.

(26)

u* ~0.5409t

Therefore, this dynamic game indeed admits a
Stackelberg strategy for the leader, which is

*( ) = {0.5409~
y, Y k»O

if y = y* ~ 1.6393t
otherwise,

(27)

and the Stackelberg cost is

Ji ~ 0 .540ge . (28)

The specific range of values for k can actually
be determined by substituting y, = k into J2, mini-
mizing the resulting expression over v E R2 and
comparing this minimum value with Ji yi, v*),
where v* ~ ~(0.1640, 0.1967)'.

Several remarks are now in order:
(1) The dynamic game of this section, with

partial state information, admits a Stackelberg
strategy for the leader, which is, however, not an
element of n.

(2) The Stackelberg cost of the leader is higher
than the global minimum value of his cost func-
tional.

(3) The leader's Stackelberg strategy necessarily
involves memory and it may again be viewed as a
threat strategy; but now the leader can threaten
the follower only in terms of the single (scalar)
variable that he observes and not through the
control vector of P2-this being the main reason
behind the strict inequality Ji >i;

(4) (27) does not characterize the complete class
of strategies that lead to the Stackelberg cost; but
any Stackelberg strategy must satisfy the side con-
dition yi( y*) ~ 0.5409~. It is quite possible that
some more appealing (such as continuous, dif-
ferentiable, ... ) strategies could constitute a Stac-
kelberg solution for the problem, realizing the
bound Ji, but this can only be discovered by
trying out specific structural forms satisfying the
foregoing side condition; one such form being the
linear strategy y,(y) = 0.5409~+p(y - y*), which
in this case happens to provide a Stackelberg
strategy for a specific value of p.

The next section is devoted to a generalization
of this indirect method (of determining Ji) to a
sufficiently broad class of dynamic games, and
subsequently, in Section 5, the method is applied
to linear-quadratic dynamic games defined on gen-
eral Hilbert spaces.

4. A general method to determine Jt for dynamic
games with partial state information

Let us return to our initial formulation of Sec-
tion 2, and introduce a two-person dynamic game
through the cost functionals J,y" Y2)' Jiy" Y2)
and strategy spaces r" r2• This is a deterministic ,
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game and therefore both players have access to the
initial state vector Xo which we may take as given a
priori. The players also acquire information about
the evolution of the game, but for P2 (the follower)
we may take his information structure open-loop
since, in a deterministic Stackelberg game, dy-
namic state information does not bring the fol-
lower any additional advantage. For PI (the
leader), however, dynamic information is in gen-
eral helpful, and we denote it in this case by e.
Further, denote the value of this information
(which in fact takes values in a finite or infinite
dimensional vector space), after both players have
chosen their strategies, by y, so that we now have
the loop relations

u=YI(y), V=Y2'

y=11(U,V) (29)
where dependence on the state (if any) is sup-
pressed since it can in turn be expressed in terms
of the control vectors. The vectors u, v, and yare
assumed to belong, respectively, to the vector
spaces U, V, and Yon which no additional struc-
ture is imposed. 4 It should be noted that, under an
assumption of causality which is implicitly re-
quired in the definition of a dynamic game, there
exists a function 1j: V ---+ Y so that (29) may be
written more conveniently as
u=YI(y),

y=1j(v).
V=Y2'

(30)

(See [17] for a discussion on this point.)
Let us now consider the following two steps:
Step I. Minimize Ji u, v) over S C V, where

S(u,y)~ {vEV:y=11(U,V)}, uEU, yEY.

(31)

Define the (partial) optimal response set

R(u,y) -: {vO E S: J2(u, vO) .;;;J2(u, v), 'VvE S}.

(32)

(Note that here u does not functionally depend on
v; it is any element of U which comprises only
open-loop strategies.)

Step 2. If R( u, y) is a singleton, denote the
corresponding unique map by T: UX Y ---+ V, and

4 Y is taken here, without any loss of generality, to be the full
range space of .".

53

consider minimization of JI(u, T(u,y)) over (u,
y)E UX Y and subject to y=11(U, T(u, y)). De-
note any minimizing solution pair by (u*, y*).

If R( u, y) is not a singleton, define (u*, y*)
through the inequality

Jt ~ sup JI ( u* , c )
VER(u*,y*)

.;;; sup JI(u,v) 'V(u,y)EUXY. (33)
vER(u,y)

Theorem 4.1. Let there exist a pair of (u*, y*) E
U X Y satisfying the requirements at Step 2, and
further let there exist a YI E fl with the property

inf J2(YI,V»J2(u*,v*) 'Vv*ER(u*,y*),
vEV

such that the composite strategy

ify= y*,
otherwise, (34)

is an element of fl' Then Jt defined by (33) provides
a tight lower bound on the Stackelberg cost of the
leader. 5

Proof. Let us prove this result for the case of
unique follower response; the other more general
case is a straightforward extension.

Simply note that, under the hypothesis of the
theorem, the leader, by applying the strategy (34),
can force the follower to the strategy
v* = T(u*,y*),

under which the realized cost value is Jr Clearly
the leader cannot do any better, since a strategy in
the structural form (34) enables the leader to utilize
his maximum power through his information y =
11(u, v), and the pair (u*, y*) in (33) is obtained by
minimizing JI subject to the freedom allotted to P2
in the nondetectable (by the leader) region of V.

Remark. A significant aspect of the result estab-
lished above is that the original dynamic Stackel-
berg game is reduced to two static (open-loop)
optimization problems which can be solved by
utilizing the standard techniques of optimization

5 In the case of nonunique responses of the follower, the
realized cost value for PI might be lower than Jj if P2 does
not utilize the supremizing strategy in (33). In the case of
unique follower response, however, Jj is the realized cost
~~ .
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(or optimal control, if the original problem is
formulated in the state space). That is in principle,
by carrying out the two steps outlined prior to
Theorem 4.1, the Stackelberg cost value can read-
ily be determined. A corresponding Stackelberg
strategy for the leader is (34); there may, of course,
be plenty others, some of them with more appeal-
ing properties in view of our discussion in Section 3.

Two special cases
(1) When the leader has access to only open-loop

information, 1/ becomes the null-function and
therefore S coincides with V, and consequently
R(u, y) = R(u) becomes the optimal response set
of the follower in the original Stackelberg game.
Step 2, then, directly determines the open-loop
Stackelberg strategy of the leader in this open-loop
game. Hence Steps 1 and 2 reduce to the well-
known method of obtaining the open-loop Stackel-
berg strategy, whenever the leader's information is
open-loop.

(2) If the leader has access to perfect closed-loop
information and the complete detectability condi-
tion is satisfied, then 1/ is an invertible transforma-
tion and S becomes a singleton. This implies that
R( u, y) also becomes a singleton determined com-
pletely by u and y, and consequently (33) becomes
equivalent to

'i= inf sup 'I(u , v) = inf 'I(u , v) ;
(u,y) vER(u,y) (u, v)E ux V

that is, the leader achieves the global minimum
value of 'I' Clearly, this conclusion is in agreement
with our previous result on this perfect informa-
tion case, i.e. Proposition 2.2.

5. Linear-quadratic dynamic games with partial
dynamic information

In this section we apply Theorem 4.1 and the
two steps of derivation preceding it to the general
class of linear-quadratic dynamic games with par-
tial dynamic information for the leader and no
dynamic information for the follower (note that
this latter assumption creates no loss of generality,
as discussed earlier). The class of games under
consideration is defined on general Hilbert spaces
and therefore our formulation covers both con-
tinuous-time and discrete time problems.

Given a two-person linear-quadratic dynamic

game in extensive form, we can eliminate the
intermediate state variables and arrive (also in
view of our discussion that led to (30) from (29»
at the following formulation (where we now use
up u2 instead of u, v for the control variables of
the players):

.f;(up u2) = ~ (uk,Akjuj)
k ,j= 1.2

+ ~ (u),IJ), i= 1,2, (35)
j= 1.2

Y = Nu2• (36)

Here ui belongs to U, which is a Hilbert space with
an appropriate inner product (', .),6 Y is the
observation of PI and belongs to another Hilbert
space Y, N is a bounded linear operator with full
range so that, for any strongly positive linear
operator B: Y'" Y (denoted B > 0), N BN* > 0
where N* denotes the adjoint of N,7 Akj is a
bounded linear aperator from ~ into Ui ; with
Aj) >0 Vi,j= 1,2, and Aji =0 for t=i.t, E ~ is
a known function of the initial state of the game
(i.e. a deterministic quantity, since the initial state
is also known), and finally

A;i-A;)AjJ-IA;/>O, i,j=I,2. i v=j . (37)

which basically makes both 'I and '2 strictly con-
vex on VI X V2• To complete the description of
the game, we have to specify the strategy space of
PI, which is taken as a class of appropriate map-
pings YI mapping Y into VI; this, however, will not
be needed in the sequel since Steps I and 2 basi-
cally involve 'open-loop' optimization problems. It
is important, though, to remember that PI utilizes
the value of y in the actual selection of his control.

Let us now proceed with the derivation of Ji
for this problem, by following the two steps out-
lined in Section 2.

Step 1. The optimization problem here is a
strictly convex quadratic progra~ng problem
with linear equality constraints, which is known to
admit a unique solution in V2 (see [18, 19]). If
u~ E V2 denotes this solution, then there exists a

6 For the sake of simplicity in notation, we do not differentiate
between inner products defined on different Hilbert spaces.

7 In this section, superscript 'star' is reserved for adjoint-not
for optimum-with the sole exception of Jr
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A E Y such that the first Gateaux variation of

L( u2) =J2 + (A, Nu2)

vanishes at u2 = u~; this is also a sufficient condi-
tion because of strict convexity. Carrying out this
minimization, we obtain, also by utilizing the lin-
ear constraint (36), the unique solution

u~( y, ul) = By + CUI + Dl~ (38)
where B: Y -> U2, C: UI -> U2, D: U2 -> U2 are
bounded linear operators defined by

(39a)

(39b)

(39c)

This then determines R(u, y) completely, which is
a singleton in this case.

Step 2. Now the problem is minimization of
JI(UI, u2) over UI X Y and subject to the linear
constraint (38). Substitution of (38) into JI(UI, u2)

for U2, leads to a quadratic function F(ul, y)
which is strictly convex on UI X Y. Therefore it
admits a unique solution, which can be obtained
by simply taking the Gateaux variation of F with
respect to ul and y, separately, and setting these
expressions equal to zero. We delete details of this
standard procedure, and only give here the solu-
tion which we denote by (u?,yo):

yO=K-]I,

uO=-K-I(K yO+i)I I 2 I

where K]: UI -> UI' K2: Y -> UI' K: Y -> Yare
bounded linear operators, with KI >0, K> 0 de-
fined by

KI =2A\. +A\2C+C*A\~ +2c*A2C,

K2 =A\2B+2C*A2B,

K= 2B*A2B- K{KI-
IK2,

and lEY, il E UI are respectively defined by

I=KiKI-lil-B*li -2B*A2Dl~,

I, = (A\2 + 2C*A2) D/~ + Ii + e-n.
Hence the first hypothesis of Theorem 4.1 is

fulfilled. The second hypothesis is also clearly
fulfilled since we can find elements YI even in UI

that make J2 arbitrarily large, because of the strict
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convexity assumption. In discrete-time finite stage
problems, for example, this would correspond to
choosing components of the control vector at the
last stage arbitrarily large (as one possibility); and
in continuous-time problems this would corre-
spond to making the control vector arbitrarily
large (in norm) in a sufficiently small subinterval
that also includes the terminal time. Consequently
the Stackelberg cost Jt of the leader in this class of
dynamic games is determined as

Ji =JI( u?, u~(yO, un)

and a possible strategy for the leader that forces
the follower to play U2 = u~, so that this cost level
is attained, is

0_ {u? ify=yO,
YI - YI (y) otherwise,

where -rl(y) is determined as discussed above.
Other, structurally more appealing, strategies
would also be possible; the only required condi-
tion on a candidate Stackelberg strategy YI would
be

YI(YO) = u",
i.e. any Stackelberg strategy is a closed-loop repre-
sentation [16,20] of the open-loop policy u? on the
equilibrium information set (yo) of the leader. In
the linear class, for example, candidate strategies
are given as

YI(y)=u?+e(y-yO)

where e: Y -> UI is any linear bounded operator
that is compatible with the 'control-information
dependence' requirements (such as causality) of
the dynamic game under consideration. Whether
such an e exists for a given linear-quadratic game,
as well as possibilities for other structural forms,
can be investigated only if we have some further
structure given on the abstract dynamic game of
this section; we do not pursue this point any
further here." For a specific application of the
foregoing results and the ideas introduced in Sec-
tion 4 to continuous-time differential games when
the leader has access to sampled state information,
the reader is referred to [21].

~ For further elaboration of this point see the recent paper (24)
which discusses existence and derivation of linear Stackelberg
strategies under partial dynamic information.
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6. Concluding remarks

We have presented, in this paper, a new indirect
method for derivation of a tight lower bound on
the Stackelberg cost value of the leader in de-
terministic dynamic games with partial state infor-
mation. This indirect method involves solution of
two open-loop optimization problems and leads,
as a byproduct, to a Stackelberg strategy for the
leader. This Stackelberg strategy, however, may
not be that appealing since it lacks features like
continuity, differentiability, etc. But a strategy that
possesses such properties may be found by trying
out several (appealing) structural forms under the
restriction that they satisfy a certain side condition
-this side condition being the open-loop value of
the Stackelberg strategy on the information set of
the leader. Even if a Stackelberg strategy with the
sought desired features cannot be found, the bound
yielded by our indirect method serves to compare
performances of some simple suboptimal strategies
for the leader against the best performance
achievable. This seems to be a promising avenue
for further research.

It is possible to extend the indirect method of
this paper to many-player dynamic game problems
with different levels of hierarchy and with partial
state information and to stochastic dynamic game
problems wherein the leader has access to partial
redundant information on the follower's actions.
For one class of such extensions see [23].
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