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AFFINE INCENTIVE SCHEMES FOR STOCHASTIC
SYSTEMS WITH DYNAMIC INFORMATION*

TAMER BASARt

Abstract. In this paper we study the derivation of optimal incentive schemes in two-agent stochastic
decision problems with a hierarchical decision structure, in a general Hilbert space setting. The agent at
the top of the hierarchy is assumed to have access to the value of other agent’s decision variable as well
as to some common and private information, and the second agent’s loss function is taken to be strictly
convex. In this set-up, it is shown that there exists, under some fairly mild structural restrictions, an optimal
incentive policy for the first agent, which is affine in the dynamic information and generally nonlinear in
the static (common and private) information. Certain special cases are also discussed and a numerical
example is solved.

Key words, stochastic systems, decision problems with multiple decision makers, incentive schemes,
hierarchical information patterns, stochastic nonzero-sum games, Stackelberg solution

1. Introduction. Consider the general class of two-agent stochastic dynamic
decision problems with a hierarchical decision structure, wherein one of the agents
(called the leader) has access to both the decision value and observation of the other
agent (called the follower), and the objective is verification of existence and derivation
of optimal strategies for the leader under which the follower’s optimal response (based
on the minimization of his expected cost function) leads to a desired "optimal"
performance for the leader. Such problems are known as Stackelberg problems [1]-[5]
or incentive design problems [8], [20]-[23] and have recently attracted considerable
attention in the literature, because of the nonstandard nature of the optimization
problem faced by the leader, when he has access to dynamic information [6]-[18];
for a survey and unification of some of the available results in the literature on
deterministic and stochastic dynamic Stackelberg problems we refer to [8], [12] and
[19], and also to [26] for a general discussion.

A recent reference [15] has shown that in deterministic dynamic incentive prob-
lems with perfect or partial dynamic information, and when the follower’s cost function
is strictly convex (but not necessarily quadratic), there exists an optimal incentive
strategy for the leader which is affine in the dynamic information. The object of this
paper is to provide a nontrivial extension of this result to stochastic decision problems
in which there is available some common information on the unknown state of Nature
to both agents as well as some private information to the leader; the leader has also
access to the value of the follower’s decision variable. The problem is formulated in
general Hilbert spaces with the follower’s loss function taken to be strictly convex in
both agents’ decision variables. In this general framework, we establish existence of
an optimal incentive strategy for the leader, which is affine in the dynamic information,
and in general nonlinear in the static (common and private) information; we also
obtain an analytic expression for the optimal solution and consider some special cases
of the general problem.
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in part by the Joint Services Electronics Program under contract N00014-79-C-0424 and in part by the
Electric Energy Systems Division, Department of Energy under contract DE-AC01-81RA-50658 with
Dynamic Systems, Urbana, Illinois 61801. It was presented at the American Automatic Control Conference,
Arlington, Virginia, June 14-16, 1982.
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200 TAMER BAAR

Section 2 provides a precise problem formulation for the case when only common
information is available to the leader, whose solution is obtained in 3 (cf. Proposition
1). Section 4 extends the formulation and results of 2 and 3 to the more general
case when the leader has also access to some private information, and a characterization
of the complete affine solution is provided in Proposition 2. Section 5 contains a
numerical example that serves to illustrate some salient aspects of the solution, and
the paper ends with the concluding remarks of 6.

2. Problem formulation. Let (f, -, ) be an underlying probability space, on
which are defined two random variables x and z taking values in R and R’ respectively.
Let U and V be given Hilbert spaces, denoting the decision spaces of DM1 (the
leader) and DM2 (the follower) respectively, and let F1 and F2 be the corresponding
strategy spaces defined as

(1) F2 {measurable ya" " -, V, such that E {(yz(z), y2(Z))} ( 0},

(2) {measurable yl" V x " - U, such that
E {(yl[y2(z ), z ], yl[y2(z), z ])u} < cx Y2 F2}.

Furthermore let F] c F1 denote the set of all static policies for the leader, i.e.

(3) F] {measurable yl’ N"- U, such that E{(yl(Z), yl(Z)),}< ee}.

Here, (., )u (respectively, (., )v) denotes the inner product associated with the Hilbert
space U (respectively, V), and the measurable transformations are restricted by the
further (implicit) condition that the expectations of the related expressions are well
defined. Withthis construction, F1, F], and F2 become Hilbert spaces under the natural
inner products derived from those defined on U, V, and V, respectively. Note that,
to each pair (Yl, "Y2) in FIx 1-’2, there corresponds an unique element/31 F], defined
by fit(z)= "YI[Y2(Z),

We now introduce two functions, LI’ " U V -, R, L2 U V , as the
loss functions of DM1 and DM2 respectively, and further introduce

as

(4) J(z, "Y1, y2)-{Ll(X,U,V)lu a/l(V, z), V a/2(Z)},

where Exlz denotes expectation over the statistics of x with conditioning on the
observed value of z. Finally, we let Ji(yl, yz), 1, 2, defined by

(5) ,/("Y1, ]/2)= E {Ji(z, "Y1, ]/2)},

denote the expected cost of DMi, under the policy pair "Y1 E El, Y2 [’2. We assume
at this point that the follower’s loss functional LE(X, it, v) is strictly convex on U V,
for every x I".

The problem faced by the leader is to find a strategy.(syn0nymously, an incentive
scheme) which, by also taking into account rational (ixpected-cost minimizing)
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INCENTIVE SCHEMES FOR STOCHASTIC SYSTEMS 201

responses of the follower, leads to a most favorable performance for the leader. This
performance may be defined as the global minimum value of Jl(yl, y2) over
or equivalently over F F2 [assuming that it exists]"

(6) f min J-(yl, y2)=J(y,
(-/,3,)F xF

which corresponds to some specific choices of 3’ e F and 72 e F2 (in this case, 3/a 3’
and y2 yz); or, more generally, there may exist some pair in F]x F2 (denoted again
(y, y)) which is chosen according to some criterion and is considered to be most
favorable to the leader. The question we address, in the next section, is the existence
and derivation of an "optimal" incentive scheme 3,10 e Fa for the leader, under which
the best (Jz-minimizing) policy for the follower is 2 e F2, and a corresponding element
in F for the leader is y y[y. (z), z]. Note that this is a meaningful problem
because, given a pair (y, y)e F x F2, there exists a plethora of elements , in F1
with the property yl[y. (z), z] y (z). Furthermore, y F1, in this case, is clearly a
Stackelberg strategy for the leader [12].

3. Optimal afline incentive schemes or the leader. Let us first introduce, for
each z ’, the set

ux v’)}(7)

where

and (u, v) are taken as (deterministic) elements in U V. Since L2(x, ",’) was taken
to be strictly convex on U V, I),(z) is also strictly convex for each z R", with
U y(z), vz y.(z)} being a boundary point. This implies that, for each z s R
there exists a hyperplane passing through (u tz, v tz), and if, further, ]2(z, ", is Fr6chet
differentiable on U V, for each z N", the equation of this supporting hyperplane
can be written as

J2(9) (V,Jz(z,u,,v),u-u,,),+(V, (z,u,v),v-v),=O

where 7,,,.]2(z, u t,:, v tz) U* is the Fr6ehet derivative of ]2 with respect to u, evaluated
at the point (u’, v t), and U* is the Hilbert space adjoint to U; V]2 is analogously
defined as an element of the adjoint space V*. Now, assuming that, for every z
V,]2(z, U tz, Vtz) O, it follows by utilizing the Hahn-Banaeh theorem [25] (see also
[15, Lemma 1]) that there exists a bounded linear operator O*" U* V*
satisfying

L( L((10) O*V. z,u’,v’)=V, z,u,v),

so that

(11) u =u t-Qz(v-vt)z

lies, for each z [’, on the hyperplane described by (9) and passes through the point
(U v). Here, Q" V- U is the bounded linear operator that is adjoint to Q*, for
each fixed z

The next question is whether (11) is a well-defined strategy for the leader, i.e.
whether it belongs to 1-’1, which requires Qz to be a measurable function of z. We
now establish an even stronger regularity property for Qz under some regularity
conditions on J2, u and v t.
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202 TAMER BA;AR

L( L(LEMMA 1. Let u z,u, Vz) and o Z, Uz, Vz) be weakly continuous tn z.
Then, there exists a linear bounded operator Oz" V -> U, weakly continuous in z, whose
adjoint satisfies the linear equation (10).

J2( A , J2( A ~,Proo[. For brevity in notation, let z, u , v) and z, u, u)
For each fixed z ’, introduce a bounded linear operator P" U* V* by

7" withu U*,(12) Pzu* ( u ), ,

which clearly satisfies (10), when substituted for Q*. Now, for any u* U* and v V,

and the latter expression is a continuous functional of z by virtue of the weak continuity
of "* "*u and v This then implies that P is weakly continuous in z, and thereby P* is
also weakly continuous in z [24]. Now, taking O P*, it readily follows that there
exists a version of O (satisfying (10)) that is weakly continuous in z. [1

The following proposition now summarizes the solution to the incentive problem
formulated in 2.

PROPOSITION 1. For the incentive problem of 2, if (i) Jz(z, u, v) is Frgchet

differentiable on U x V, (ii) for every z ", $r,.z(Z u’,. v) O, and (iii) 7,2(z, u v)
and 7v.:(z, U’z, Vtz are weakly continuous: in z, there exists an optimal incentive strategy
(/ (v, z for the leader, in the form

(13) u= 10V (v, z)= u-Oz(V-Vz),

where the linear operator Oz V Uis chosen according to (1 O) and is weakly continuous
in z.

Remark 1. If U and V are finite-dimensional spaces, U* U and V* V, and
consequently 7,J2 and Tvar: are (column) vectors of appropriate dimensions for each
z I". Then Oz becomes a matrix-valued function of z, and can be chosen as

(14) "( ’)[vL( ’)]’/llvL( ’)11:Oz=V.Jz Z, Uz, Vz z,u,vz z,u,vz

Note that, under the hypotheses of Proposition 1, every element of Q will be a
continuous function of z.

As a special class of problems, let us consider now the case when Ll(z, u, v) is
quadratic on n x U x V:

(15) L2(x, U, t)=1/2(U, AllU)u +(u, A12v)u +1/2(v, A22v)v +(u, C1X>u +(/2, C2x>v,

where Aij and Ci are linear bounded operators, A22 is strongly positive, and A 11-

A x2(A22)-aA’1 is also strongly positive. Then,

]:(z, u, v)=1/2(u,Axu). +(u, AI:v). +1/2(v,A::v> +(u, C) +(v, C2)

See [24] for a definition of weak continuity.
A set of sufficient conditions for this is that i) ]2(z, u, v) be continuously Fr6chet differentiable in u

and v, and be continuous in z, and ii) u and v be weakly continuous in z.
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INCENTIVE SCHEMES FOR STOCHASTIC SYSTEMS 203

where E[xlz]. Given a point (u’ v z) e U x V, for each z R the Fr6chet deriva-
tives at this operating point can easily be determined to be (., tT)u and (., tT)v, where
tT e U and Tz e V are

(16a) Uz --AllUz +Azv +C,
(16b) A’2uz +Azzvz + Cz.
This then leads to the following Corollary (to Proposition 1) in view of (12).

COROLLARY 1. Let L2 be given by (15), and tz and z be defined by (16a) and
(16b), respectively. If u’, v are weakly continuous in z, E[xlz is continuous in z,
and, for every z ", t # O, there exists an optimal incentive strategy for the leader
which is affine in v and weakly continuous in z, and is given by

(17) /ol (v, z) ut az (Sz, V -V’

Proof. In view of the discussion preceding Corollary 1, the proof will be complete
if we show that Oz’V U in (13) (and (10)) is given by [(Sz, .)o/lla ll ]a . Towards
this end, we first observe from (12) that a possible solution of (10) is given by

~, ,
O* * (uz, u ).. .,
zU "’- Vz with u* e U*,

where tTz* and tTz* are the Fr6chet derivatives belonging to U* and V*, respectively.
Since U* and V* are Hilbert spaces, corresponding to u and tTz there are unique
elements az U and tT e V, with the property (tz*, u*)u. (tT, u*), and (3z*, v*).
(tTz, v*) for all u* U*, v* V* and every fixed z e N,n (see [25]). These elements
and 5z can explicitly be determined in our case (because of the specific structure of
L2) and are given by (16a) and (16b), respectively. Hence, we have

whereby

which establishes the desired results.

4. A more general formulation: Leader acquires private information. We now
extend the analysis and results of the previous section to a more general class of
incentive problems wherein the leader observes, in addition to z, the output of a
second random variable 37 (taking values in P). This random variable will in general
be correlated with x and z; however, we assume (for technical reasons) existence of
a measurable transformation f: ’ x N P, so that the random variables y f(37, z)
and z are statistically independent, and the sigma fields generated by (17, z) and (y, z)
are the same. (For example, if y and z have a joint Gaussian distribution, f(17, z) __a 37
E[)rlz].) Therefore, we henceforth assume that u y(v, z, y), v 3,2(z), and z and
y are statistically independent.
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204 TAMER BAAR

For this problem, we now first modify the definitions of the strategy sets (2) and
(3) to read

(18)
F1 {measurable yl" V x Nm x N" - U, such that

{<v[w(z), z, y], Vl[W(z), z, y]>}< oo
Z,y

and

(19) F] {measurable yl" N" x [o U, such that E {(yl(z, y), yl(Z, Y))u} < 00}.
z,y

Furthermore, we redefine J and J/as

(20) Ji(z, "Y1, 2) E {Li(x, u, v)[u l(V, z, ),’) v V2(z)},
x,y[z

(21) (1, "Y2)-E{Ji(Z, "Y1, 2)},

and let {u y](z, y), v y(z)} denote a pair in F] xF2 that (globally) minimizesZ,y

J1. For each fixed z e ’, we let

(22) B (z) {measurable/3z" U, so that {(/3 (y),/3 (y))} < oo},

and note that to each 71 17’ and for fixed z " there will correspond a unique
eB(z) such that yx(Z, ") =fl(’).
Now utilizing the statistical independence of z and y, let us introduce as a

cotmterpart (7), and for each z e ’, the set

(23) fl,(z) {(/3, v)eB(z) Vl]2(z,, v)<-_]2(z,’z, v’z)},

where

(24) ]2(z, , v)= E {Lz(x, /3(y), v)lz},
x,y[z

and/3tz is the restriction of 3/] Y’ to B (z). It is worth to note, at this point, that

E {]2(z’’z U )} zE{zx,ylzE {Lz(x,/3’, <y), y (z >)[z}}
(25)

E {L2(x, y (x, y (z, ), y(z)))}=]2(y, y).
X, y,

We can now proceed with the derivation of an optimal incentive scheme by following
the analysis of 3, with U replaced by B (z), where the latter can be made a Hilbert
space under the inner product

(1, 2)/3 E {(/31(y), flE(y))}, flic=B(z).

It is easy to see that strict convexity of L2(x, ",’) on U x V implies strict convexity
of J2(z, ", on B (z) x V, for each z N", and hence assuming that the latter is Fr6chet
diiferentiable on B(z) x V, the equation of the hyperplane supporting fit(z) at (/3t, v’)
is

(26) (V]z(Z, /3 ’z, V’z), (V,]z(Z,/3’’z),+ v ),v-vz)=o
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INCENTIVE SCHEMES FOR STOCHASTIC SYSTEMS 205

where Vof2(z,tz, vtz)eB(z)* is the Fr6chet derivative of ]2 with respect to/3, and
evaluated at the point (fitz, v’)z Since there is a natural counterpart of Lemma 1 in
this framework, validity of the following counterpart of Proposition 1 can readily be
established’

PROPOSITION 2. For the incentive problemformulated in this section, if (i) ]2(z, , v)
is Frdchet differentiable on B (z) x V, (ii) for every z m, V/312(Z, tz, 13 tz) O, and (iii)
VoJ2(z, z, v z) and Vf2(z, , v) are weakly continuous in z, there exists an optimal
incentive strategy 3/ (v, z, y) for the leader, given by

(27) u z,y / (v, z, y Uz.y Oz (v v )(y),

where Oz" V--> B (z is a linear bounded operator which is weakly continuous in z, and
whose adfoint satisfies the linear equation

(28)

which is defined on V*.
For the special case when L2 is quadratic, as given by (15), J2(z,/3, v) can be

written as

(29)

where

fiz {flz Y Z } E {flz Y

(z) a- E {xlZ}=xEiz{xlz}.X, ylZ

For fixed z Im, the Fr6chet (or Gateaux) differential [25] of ]2 with respect to fl,
and at the point (fit v z) is

t,hz) E{(flt8t3]2(z, flz, vz" z(y),A11hz(y))u}

+(A12vtz, l?tz), + E {(ClX,
x,ylz

where hz e B (z) is an admissible variation and ng’z A Ev {hz (y)}. Since

x,YlZ y,

this expression can be written as

81312(Z’ tz’ l)tz hz E {(A1[3tz (y +A12v -b Cl hz (y ))u}

where

ff(z,y) --a E {xly, z},
xlY,Z
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206 TAMER BA,}AR

and it readily follows from this .expression that the Fr6chet derivative of J2 with respect
to/3z 6 B (z) is (., flz)t where/3 6 B (z) is given by

(30) z "-A ll[tz q"A12vtz "[-C1)(Z, ").

The Fr6chet derivative with respect to v 6 V, on the other hand, readily follows from
(29) to be (., z)v where tz V is given by

(31) z A*lz E {fl’z (y )} +A22v’z + C2(z).

In view of these relations, a possible solution for Q, whose adjoint satisfies (28), is

(’,z)
(32) Oz(’)= IItzll
which follows by following the arguments used in the proof of Corollary 1 in 3. This
then leads to the following corollary (to Proposition,2)"

COROLLARY 2. Let L2 be given by (15), and flz and ff be defined by (30) and
(31), respectively. If 3/’ (z, y is weakly continuous in z and y, y 2 (z is weakly continuous
in z, ’(z, y) is continuous in z and y, (z) is continuous in z, and, for every z ’, fi # O,
there exists an optimal incentive strategy for the leader which is affine in v, and weakly
continuous in z and y, and is given by

(33) / (v, z, y)=
E{llz (y)ll}

Remark 2. An important observation that can be made from (33) is that the
dynamic part of the leader’s optimal policy depends not only on the common informa-
tion z (about x) but also on the leader’s "private" information y.

5. A scalar example. To illustrate Corollary 2, and especially the structural
dependence of y on the common and private information (z and y), we consider in
this section a structurally simple numerical example. Let n m p 1, and U V .
Let x, Wl and WE be independent zero-mean Gaussian random variables with variance
1. Define z x + w and 37 x + W2, in which case

y =-z[lz]=i-z.
(z, andAssume that 3’1 y y2(y) are in the structural form (where al, a2, a3 are known

scalars)

] (Z, y)’- IZ "[" 2Y,

which would constitute a globally minimizing solution to a quadratic cost function for
the leader.

Now let L2 be given as

Lz(X, u, v 1/2(u )2 + uv + 2(v)2 + ux + 2vx,

which is strictly convex in the pair (u, v). Then/3 (y) and tTz can be computed to be
[from (30) and (31), respectively]

dz(y) aaz +a2y +az +E[xlz, y] (a +a +1/2)z + (a2+1/2)y az + c2y,

z y-Ez [OlZ q- o2y] q-4o3z q-2E[xlz]= (1 +4a3 + 1)z a-- c/3z.
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INCENTIVE SCHEMES FOR STOCHASTIC SYSTEMS 207

Under the parametric restriction a2 --31-, all the hypotheses of Corollary 2 are satisfied;
and since

an optimal incentive scheme for the leader is

(34) V(v,z, y)=az +ay- az+3a/
Note that this policy is nonlinear in the common information z, and the private
information y also enters the gain term multiplying v. We show in Appendix 1, by
direct verification, that (34) indeed constitutes an optimal incentive scheme for the
leader, forcing the follower to the desired solution y(z)

An important question that can be raised at this point is whether (34) constitutes
a unique solution to the problem under consideration within the class of incentive
schemes that are ane in v, or equivalently, whether the gain term in (34) solves (28)
uniquely. We address this question in the sequel and show that the ane solution is
not unique.

Towards this end, let us first assume that there is no private information for the
leader, and (z)= a z. Then, an optimal solution can be obtained from Corollary 1
as

(35) y(v,z)=az- [v-a3z]

which is in fact the unique one in the class of ane policies, and is linear also in the
static information z, thus corroborating a result obtained in [16] for linear-quadratic
problems with hierarchical decision structure. Now, if an additional information y
comes in to the leader, which is statistically independent of the random variable z
characterizing the common information, there seems, at the outset, no particular
reason for the gain term in (35) to change, since v is measurable only with respect
to the sigma field generated by z. Hence, intuitively, one expects the policy

(3) (V,Z,y)=lZ+y-- [V--3Z]

to constitute an optimal incentive scheme when both z and y are acquired by the
leader. This is indeed true, and the validity of this intuitive result has been established
in Appendix 1 by showing that

x,ylz

Hence, the conclusion is that the scalar example of this section admits at least two
ane optimal incentive schemes one of which is also linear in the static-information
(z, y).

6. Concluding remarks. By adopting a functional analytic framework, we have
obtained optimal incentive strategies (for the leader) in a general class of hierarchical
two-agent stochastic Stackelberg problems in which the leader has access to the
follower’s decision, to some common information, and also to some private informa-
tion. The main conclusion of this analysis is that, under some fairly mild structural
restrictions, there exists an optimal incentive policy for the leader, which is ane in
the dynamic information and generally nonlinear in the static (common and private)
information.
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208 TAMER BASAR

Even though we have used a general Hilbert space setting for the control (decision)
spaces, we have assumed the random variables to take values in finite-dimensional
spaces. We have chosen this framework in order to display salient features of the
derivation without being distracted by the additional technical restrictions that would
be required otherwise. However, our results (embodied in Propositions 1 and 2) are
valid in a more general framework which allows the random variables to be weak
random variables (cf. [24])defined on (infinite-dimensional) Hilbert spaces, which
includes, for example, the case of stochastic processes.

Appendix. In this appendix we show, by direct verification, that both yo and
0o

yi given by (34) and (35), respectively, solve the stochastic incentive problem of
5.

Starting with the functional form

U =atZ +azy-Q(z,

which is clearly a dynamic representation of the static policy y (z, y) at the desired
equilibrium (y, y), we substitute this into Lz(X, u, v) and take the expected value
conditioned on z, with Q being an arbitrary function measurable in z and y. The
result is the function

J(v,z)= E {[u’-O(v-v’)]:+[u’-O(v-v’)](v +x)+2vz+2vxlz}

2 Olz2+{u, Iz}+olzv +-
-E{Olz}(v -vr)v -E{Oxlz}(v -v’) + 2v 2 + vz,

where u (z, v--’Y1 y
Since E{OZlz}-E{OIz}+2>O a.e. .,J(v,z) is strictly convex in v a.e.

and hence v v’ constitutes the unique minimizing solution to Y if and only if
O.l(v t, z)/Ov 0 a.e. z. This leads to the following equation to be satisfied by O(y, z)"

(A1)
[al- E[O(y, z)lz](a3 + at) + 4a3 + 1]z

a2 E[yO(y, z)lz]- E[xO(y, z)lz] O.

Let us now consider the following two choices for Q"

1) O(y, z)

2) O(y, z)=(lZ +ffzy)ff3z/[21z+ 3c/2].

In the former case, (A1) reads

t3(O3 ._ O 1)
O1

O1

which can easily be shown to be an identity, by making use of the definitions of 6

and if3. Hence yo given by (35) is indeed an optimal incentive scheme.
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In the latter case, (A-l) reads

[ 13Z2 ] 3a2ff2c3Z
3 (ffl 1/2)

1Z -1- OCe2/2 2ci 12z z + 3c22 -- -::, z E[xO(y, z)] z 0

3162Z .+. C xZ
3 3

O30 1Z 23Z
:> 2c1z+3c -2cz2+36-2cz2+3c =0

since E[x z 1/2z and E[xylz 1/2. The latter equation is an identity, thus corroborating
the optimality of the incentive strategy 3 given by (34).
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