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Başar, T. The Role of Gossiping in

Information Dissemination over a

Network of Agents. Entropy 2024, 26,

9. https://doi.org/10.3390/

e26010009

Academic Editors: Adam Lipowski,

Photios A. Stavrou, Nikolaos Pappas,

Giulia Cervia and Serkan Sarıtaş
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Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
bastopcu@illinois.edu (M.B.); etesami1@illinois.edu (S.R.E.)
* Correspondence: basar1@illinois.edu

Abstract: We consider information dissemination over a network of gossiping agents. In this model,
a source keeps the most up-to-date information about a time-varying binary state of the world, and
n receiver nodes want to follow the information at the source as accurately as possible. When the
information at the source changes, the source first sends updates to a subset of m ≤ n nodes. Then,
the nodes share their local information during the gossiping period, to disseminate the information
further. The nodes then estimate the information at the source, using the majority rule at the end of
the gossiping period. To analyze the information dissemination, we introduce a new error metric
to find the average percentage of nodes that can accurately obtain the most up-to-date information
at the source. We characterize the equations necessary to obtain the steady-state distribution for
the average error and then analyze the system behavior under both high and low gossip rates. We
develop an adaptive policy that the source can use to determine its current transmission capacity
m based on its past transmission rates and the accuracy of the information at the nodes. Finally, we
implement a clustered gossiping network model, to further improve the information dissemination.

Keywords: information dissemination; gossip networks; gossiping effect; social networks; Markov
chains

1. Introduction

Motivated by many applications—such as autonomous vehicular systems, content
advertising on social media, and city emergency-warning systems—information dissem-
ination over the networks has gained significant attention. For instance, in the case of
autonomous vehicular systems or city emergency-warning systems, timely critical informa-
tion, such as accident alerts or tornado warnings, needs to be disseminated as quickly and
as accurately as possible. As another example, companies often want to let their potential
customers know about their latest products through advertisements over social media. In
both of these examples, there is a single information source where the most up-to-date
information is disseminated to multiple receivers over time.

In this paper, we consider a communication system with a source and n receiver nodes.
The source keeps the most recent information about the state of the world, which takes
binary values 0 or 1, and changes according to an exponential distribution. Upon each
information update, the source wants to let the receiver nodes know about the most recent
information. As the source has limited transmission capacity, it cannot send information
to more than m ≤ n nodes, and each information transmission at the source takes an
exponentially distributed length of time. After sending updates to m nodes, in order to
further disseminate information, local information is shared between each pair of receiver
nodes, a process we shall refer to as gossiping. The gossiping period continues until the
information at the source is updated again. At the end of each gossiping period, each
receiver node that did not get the most recent information directly from the source comes
up with an estimate based on the majority of the information it received from the other
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nodes. In order to measure the accuracy of the information dissemination at the end of
each update cycle, we consider an error metric that takes value 1 for a receiver node that
has a different estimate compared to the information at the source.

1.1. Related Work

In the gossip-network literature, a model where only one node tries to spread its
information to the entire network was considered in [1] and named single-piece dissemination.
Multi-piece spreading, where all nodes try to spread their individual information to the
remaining nodes, was studied in [2]. Moreover, the problem of finding the average of
all nodes’ initial information in a gossip network was studied under the framework of
distributed averaging in [3,4]. The main goal of these works was to analytically characterize
either the information spreading time [1,2] or the averaging time [3,4] in the entire network.
In all these settings, the information was considered to be static, i.e., it did not change
over time.

Reference [5] considered the problem of gossiping dynamic information. As the gossip
network may consist of asynchronous agents where there is no central clock, in order to
maintain the information flow in the gossip network, timestamping is a commonly used
technique, where the agents keep the generation time of their local status updates [6].
During the gossiping phase, information updates among the agents are determined based
on whoever has the largest timestamp of particular information, which indicates the
information freshness of the local agents.

In another line of research, to measure information freshness, the age of information
was defined as the difference between the current time and the timestamp of the last status
update received by the agents. For a more detailed review of the age of information,
we refer to [7,8]. Recently, scaling of the age of information was considered in gossip
networks [9–11]. In [9], the stochastic hybrid system (SHS) method was used to characterize
the version age in arbitrarily connected gossip networks, and scaling of the version age
was studied in the symmetric ring and fully connected networks. By using the idea of
clustering, scaling of the age of information was further improved in [10]. Then, scaling of
the binary freshness metric [12–14], which takes either the value 1 when the information is
fresh, or 0 otherwise, was studied in the gossip networks in [11].

In all these aforementioned works, the timestamp of the information plays a critical
role in determining information dissemination in gossip networks. As the timestamp of
the information increases, as new versions of the information are generated, either the size
grows without bound—in which case, the agents spend most of their capacity in exchanging
large numbers and comparing the values of these large timestamps [5], to determine the
freshest information—or, in the case of a bounded timestamp, when overflow happens, the
order for information freshness can be lost [6]. In certain applications, an external adversary
may interrupt the information flow and alter the timestamp of the information, such that
the older versions of the information may be re-branded as fresh information [15]. Recently,
the effect of timestomping on age scaling was explored in [16].

Unlike the earlier works on gossip networks, as in [1,2], we considered in this paper
a time-varying information source and, instead of tracking the information-spreading
time, we studied the average percentage of the nodes that had access to the most recent
information at the source before it was updated. Compared to the dynamic information
dissemination in [6], in our work we did not use the timestamps of the information. Instead,
to maintain the information flow, we used instantaneous signaling from the source to the
nodes, to synchronize the nodes. We implemented an information updating mechanism
consisting of two phases: in the first phase, only the source could send updates to m nodes;
in the second phase, i.e., in the gossiping phase, only the nodes could share their local
information. Thus, in the gossiping phase, incorrect information in the network could
also spread. Works [9–11] considered the age of information in gossip networks, where
each information update at the source was treated as a new update. In our work, on the
other hand, we considered a binary dynamic information source. Thus, the content of the
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information affected our error metric. Furthermore, in [9–11], the nodes updated their
information only if they received fresher information. By contrast, in our work, the nodes
that did not receive any update directly from the source made decisions based on the
majority of the updates that they received from the other nodes. As a result, the error metric
and the information updating model that we considered differed from the earlier works
in [9–11].

The binary information structure appears in real-world applications such as robotic
networks, where a group of robots working on a horizontal line wants to decide whether a
neighbor robot is in front of the group or behind it. Here, the binary information structure
is sufficient to represent the relative position of the robots in the network. Inspired by
this example, by using only the sign of the relative states, reference [17] considered a
decentralized-online-convex-optimization problem with time-varying loss functions, and
reference [18] solved a distributed discrete-time optimization over multi-agent networks.
As another notable example, reference [19] considered a model where the actual opinion
of the public evolved as a continuous variable in [0, 1] but the expressed opinions took
only discrete binary values {0, 1} that resembled the opinion polls. Motivated by all these
examples, in our work, we focused our attention on binary information dissemination as
an initial step in analyzing the role of gossiping in information dissemination.

Finally, dissemination of misinformation on social networks has attracted significant
interest in recent years. The network immunization problem has been considered, to prevent
the diffusion of harmful information that can infect the network [20–22]. More specifically,
reference [20] proposed an algorithm that utilizes the community structure for network
immunization. Reference [21] proposed a comprehensive solution for the immediate
detection and containment of harmful content, aiming to curb its propagation across the
network. Reference [22] applied deep neural networks to develop context-aware algorithms
that can detect fake news.

1.2. Contributions

In this work, we first characterize the equations necessary to obtain the steady-state
distribution of the average error (which was also appeared in our preliminary work in [23]).
Then, we provide analytical results for the high and low gossip rates. When the gossip rate
is high, we show that the probability of obtaining correct information converges to a step
function where if the majority of the nodes have the correct information then all the nodes
are able to estimate the information correctly with probability 1. In other words, as the
gossip rate increases, the information at all nodes becomes mutually available to them, and
all the nodes in the network behave like a single node. However, when the gossip rate is
low, the gossiping phase can be approximated by either not receiving any updates, in which
case the nodes hold on to their prior information, or receiving a single update. Based on
this approximation, we characterize analytically the gain obtained through gossiping, and
we find an adaptive selection policy for the source, which suggests that the source should
send updates to more nodes when the nodes have mostly incorrect information. Then,
to further reduce the average error, we implement the idea of clustering, where, instead
of sending information to all nodes, the source sends its information only to a smaller
number of cluster heads. Then, the cluster heads forward the information to nodes within
their clusters. For this network model, we characterize the equations to find the long-term
average error at the cluster heads and at the nodes in the clusters. Finally, we provide
extensive simulations, to illustrate the effect of gossiping and clustering on information
dissemination.

2. System Model and Problem Formulation

We considered an information updating system consisting of a source and n receiver
nodes, as shown in Figure 1. The source kept the most up-to-date information about a
state of the world that took binary values of 0 or 1. The information at the source was
updated following a Poisson process with rate λe. We defined the time interval between
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the jth and j + 1th information update at the source as the jth update cycle and denoted
it by Ij. We assumed that the source was able to send instantaneous signals to the nodes.
After receiving these signals, the nodes knew that information at the source had been
updated, but they did not know what information had been realized at the source. Such
instantaneous signalings exist in many practical systems. For example, consider a news
provider making news either to support or oppose a topic of interest. After the news is
published, the news provider can send an instantaneous notification to its subscribers about
the occurrence of the news through push notifications on smart devices or headlines in
TV broadcasts or their websites. However, after receiving these notifications, individuals
still do not know the actual update until they enter the news provider’s website or watch
the TV broadcast. As another application, consider a city emergency-warning system, or
anomaly detection in security applications where warning signals can occur over time.
As warning signals can also happen due to false alarms, upon receiving such warning
signals, individuals do not know whether there is an actual anomaly or not, until further
test results can confirm the actual status. Thus, motivated by the aforementioned examples,
we utilized the synchronization signal, which can indicate the information update at the
source but does not provide any information about the source’s state realization.

We denoted the information at the source at update cycle j as xs(j). For a given xs(j),
the information at the source at the j + 1th update cycle was equal to xs(j + 1) = xs(j) with
probability 1 − p and to xs(j + 1) = 1 − xs(j) with probability p, i.e.,

P(xs(j+1)|xs(j)) =

{
1 − p, if xs(j + 1) = xs(j) ,
p, if xs(j + 1) = 1 − xs(j),

(1)

for all j, where 0 < p < 1
2 . As 0 < p < 1

2 , the nodes kept their state estimation unchanged
whenever a new update cycle started. (Our results are extendable to the setting where
0.5 < p < 1. In this case, the optimal decision taken by each node should be to revert their
belief at the beginning of each update cycle.)

The source updated each receiver node according to a Poisson process with rate λs
n .

In this system, in addition to the update arrivals from the source, each node can share
its local information with the other nodes, a process called gossiping. Specifically, in this
work, we considered a fully connected network where each node was connected to every
other node with equal update rates. The total update rate of a node was λ. Thus, in this
network, each node updated its neighbor nodes following a Poisson process with rate λ

n−1 .
We denoted the information at node i at update cycle Ij as xi(j). The nodes wanted to
follow the most up-to-date information prevailing at the source as accurately as possible,
based on the updates received from the source as well as from the neighbor nodes during
an update cycle.

In this paper, we considered an information updating mechanism where at the be-
ginning of each update cycle Ij the source sent its current information to m nodes where
1 ≤ m ≤ n, as shown in Figure 1a. Here, we assumed that the source knew (or was able to
sense/monitor) the information prevailing at the nodes and, thus, it sent updates to the
nodes that carried different information compared to the source. (This approach was moti-
vated especially by online advertisements, whereby companies such as Amazon and Google
are able to monitor whether a potential customer is interested in their target products by
the customer’s search, view, and click history and, thus, present their advertisements
accordingly. They can sense the final opinion of their potential customer by observing the
potential customer’s behavior, such as buying an advertised product). During this phase, if
the information at the source was updated, then another update cycle started and, thus, the
jth update cycle could be terminated before sending updates to m nodes. If the source sent
updates to m nodes, it sent another instantaneous signal to start the gossiping among the
nodes. Then, we entered the gossiping phase in the update cycle Ij. During the gossiping
phase, illustrated in Figure 1b, the nodes shared their local information with one another.
When the information at the source was updated, the gossiping phase ended. At the end of
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the gossiping period, the nodes that did not get an update directly from the source updated
their information based on the majority of the updates they received during the gossiping
period. If a node did not get any updates from the source or the other nodes, it kept its local
information unchanged. We denoted the information at node i at the end of the gossiping
period by x′i(j). In order to measure the performance of the information dissemination
process, we defined the error metric for node i at the update cycle j as

∆i(j) = |xs(j)− x′i(j)|. (2)

1

2

3

4

5

6

1sourceλe

(a)

1

2

3

4

5

6

1sourceλe

(b)

Figure 1. A communication system that consists of a source and fully connected n nodes where
(a) only the source sends updates to the nodes, and (b) the nodes share their local information, called
the gossiping phase.

Then, the average estimation error over all the nodes equaled ∆(j) = 1
n ∑n

i=1 ∆i(j),
and the long-term average estimation error over all the nodes was given by

∆ = lim
J→∞

1
J

J

∑
j=1

∆(j). (3)

In the next section, we provide detailed analyses to characterize the long-term average
error ∆.

3. The Long-Term Average Error

In this section, we characterize the long-term average error ∆. Let us consider a generic
update cycle Ij and, for simplicity of presentation, let us drop the index j from the variables
in the rest of the analysis. At the beginning of the update cycle, we denote the number
of nodes that have the same information as the source by N ∈ {0, . . . , n}. In this phase,
either the source sends an update to a node after an exponential time with the rate λs or the
information at the source is updated after an exponential time with the rate λe. Thus, the
source sends an update to a node with probability λs

λs+λe
or the information at the source

is updated and the next update cycle starts with probability λe
λs+λe

. Therefore, during a
typical update cycle I with N < n − m, the source sends Ks updates with the following
probability mass function (pmf):

P(Ks = ks|N < n − m) =


(

λs
λs+λe

)ks λe
λs+λe

, if ks = 0, . . . , m − 1,(
λs

λs+λe

)m
, if ks =m.

(4)

Similarly, if N ≥ n − m, we have

P(Ks = ks|N ≥ n − m) =


(

λs
λs+λe

)ks λe
λs+λe

, if ks = 0, . . . , n − N − 1,(
λs

λs+λe

)n−N
, if ks = n − N.

(5)
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For an update cycle with N < n − m, the network enters the gossiping phase with probabil-

ity P(Ks = m|N < n − m) =
(

λs
λs+λe

)m
, which decreases with m. In other words, choosing

a large m decreases the probability of entering the gossiping phase. On the other hand,
choosing a small m results in sending updates to a small number of nodes and, thus, in the
gossiping phase, incorrect information can be spread. Therefore, there is an optimal m that
achieves the smallest average error ∆.

If the source sends updates to m nodes before the information at the source is updated,
then the gossiping phase starts. During the gossiping phase, either each node receives an
update from the other nodes after an exponential time with rate λ or the information at the
source is updated after an exponential time with rate λe. As in [24], in the gossiping phase,
node i receives Ki updates with the following pmf:

P(Ki = ki) =

(
λ

λ + λe

)ki λe

λ + λe
, ki = 0, 1, . . . . (6)

In other words, Ki has geometric distribution with parameter λe
λ+λe

, i.e., Ki ∼ Geo( λe
λ+λe

).
At the beginning of the gossiping phase, there are N + m nodes with the same infor-

mation as the source and n − N − m nodes with incorrect information. For the nodes with
xi = xs, conditioned on the total number of updates Ki = ki that they received during the
gossiping phase, the distribution of the number of updates that are equal to xs is given by

P(Ri = r|Ki = ki, xi = xs) =

(
ki
r

)(
N + m − 1

n − 1

)r(n − N − m
n − 1

)ki−r
, r = 0, . . . , ki, (7)

where Ri is a random variable denoting the number of updates that are equal to xs. In other
words, for a node i that has xi = xs, conditioned on Ki = ki, the random variable Ri has a
binomial distribution with parameters (ki, N+m−1

n−1 ), i.e., Ri ∼ Bin(ki, N+m−1
n−1 ). Similarly, for

the nodes i with xi ̸= xs, we have

P(Ri = r|Ki = ki, xi ̸= xs) =

(
ki
r

)(
N + m
n − 1

)r(n − N − m − 1
n − 1

)ki−r
, r = 0, . . . , ki. (8)

At the end of the gossiping period, based on the majority of the updates, the nodes i that
have xs as their prior information estimate the information at the source as x′i = xs with
probability PT,1(N), which is given by

PT,1(N) =
∞

∑
ki=1

P(Ri ≥ ⌊ ki
2
⌋+ 1|Ki = ki, xi = xs)P(Ki = ki)

+
1
2

∞

∑
ki=1

P(Ri = ki|Ki = 2ki, xi = xs)P(Ki = 2ki) + P(Ki = 0). (9)

We note that the first summation term in (9) corresponds to the case where a node receives
a strictly higher number of xs during the gossiping period. The second summation term in
(9) refers to the case where a node receives an equal number of xs and 1 − xs. In this case,
a node estimates the information as either xs or 1 − xs with equal probabilities. If a node
does not get any updates during the gossiping phase, it keeps its current information that
is given by the last term in (9). Similarly, for a node i that has prior information xi ̸= xs, we
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can derive an expression for the probability of updating its information to xs, denoted by
PT,2(N), as

PT,2(N) =
∞

∑
ki=1

P(Ri ≥ ⌊ ki
2
⌋+ 1|Ki = ki, xi ̸= xs)P(Ki = ki)

+
1
2

∞

∑
ki=1

P(Ri = ki|Ki = 2ki, xi ̸= xs)P(Ki = 2ki). (10)

Note that this expression is identical to that in (9), except that in the summations we use
the probabilities P(Ri = r|Ki = ki, xi ̸= xs) given in (8) and that P(Ki = 0) is excluded. In
the next theorem, we state the long-term average error.

Theorem 1. Under the proposed gossiping network, the long-term average error ∆ is given by

∆ =
n

∑
j=0

n

∑
n′′=0

(π0,j + π1,j)P(N′′ = n′′|N = j)
n − n′′

n
, (11)

where P(N′′ = n′′|N = j) is provided in (13) and π = [π0,0, . . . , π0,n, π1,0, . . . , π1,n] is the row
vector of steady-state probabilities of the Markov chain over the state space (xs, N). The unique sta-
tionary distribution is given by the solution of π = πP for a stochastic matrix P∈R2(n+1)×2(n+1),
where the transition probabilities of P are given later in (14).

Proof. We note that at the end of an update cycle with a gossiping phase, m nodes that
obtain information directly from the source will have x′i = xs (In the gossiping phase,
these nodes send information to other nodes with rate λ, but they do not update their
information based on the updates received from the other nodes). There are N nodes
that have prior information xs. These nodes will update their information to x′i = xs
with probability PT,1(N) and to x′i = 1 − xs with probability 1 − PT,1(N). Thus, the total
number of nodes that update their information to xs, denoted by N′

1, has the binomial
distribution N′

1 ∼ Bin(N, PT,1(N)). On the other hand, there are n − N − m nodes that
have prior information 1 − xs. At the end of the gossiping phase, these nodes will update
their information to x′i = xs with probability PT,2(N) and to x′i = 1 − xs with probability
1 − PT,2(N). Thus, the total number of nodes that change their information to xs, denoted
by N′

2, obeys the binomial distribution N′
2 ∼ Bin(n − N − m, PT,2(N)). Therefore, at the

end of the gossiping period, the total number of the nodes that have xs is equal to m + N′,
where N′ = N′

1 + N′
2 has the following pmf:

P(N′ = n′) =
ℓupper

∑
ℓ1=ℓlower

P(N′
1 = ℓ1)P(N′

2 = n′ − ℓ1), (12)

for n′ = 0, . . . , n − m, where ℓlower = max{0, n′ + N + m − n} and ℓupper = min{N, n′}.
Next, let us define N′′(j) to be the number of nodes that have the same information

with the source at the end of the update cycle Ij, i.e., x′i(j) = xs(j). If the update cycle Ij ends
before entering the gossiping phase, then either N(j) < n − m, Ks < m or N(j) ≥ n − m. In
these cases, the source sends updates to ks nodes with probability distributions given in (4)
and (5), respectively. If the source is able to send updates to m nodes, then the gossiping
phase starts and, as a result, N′′(j) = m + n′ nodes will have xs(j) with probabilities
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P(Ki = m)P(N′ = n′), where n′ = 0, . . . , n − m. Thus, the probability distribution of N′′

for a given N is given by

P(N′′=n′′|N)=



P(Ks = ks|N < n − m), if n′′ = ks + N < m,

P(Ks = m|N < n−m)P(N′ = n′), if m ≤ n′′= m+n′ < N,

P(Ks =n′′−N|N < n−m)

+P(Ks =m|N < n−m)P(N′ = n′′−m), if m ≤ N ≤ n′′ < N+m,

P(Ks = m|N < n − m)P(N′ = n′′ − m), if N + m ≤ n′′ ≤ n,

P(Ks = n′′ − N|N ≥ n − m), if n − m ≤ N ≤ n′′ ≤ n.

(13)

With the pmf of N′′ as provided in (13), we can fully characterize the transition proba-
bilities of going from N nodes that have xs at the beginning of an update cycle to N′′

nodes that have xs at the end of that update cycle. Now let us consider a Markov chain
over the state space (xs, N), where by abuse of notation we label the first n + 1 states
(0, 0), (0, 1), . . . , (0, n) by 1, 2, . . . , n + 1, and the last n + 1 states (1, 0), (1, 1), . . . , (1, n) by
n + 2, n + 3, . . . , 2n + 2. We can then represent the transition probabilities between dif-
ferent states a, b ∈ {1, 2, . . . , 2n + 2}, using a stochastic matrix P, where Pa,b denotes the
probability of moving from state a to state b and is given by

Pa,b=


(1 − p)P(N′′ = b − 1|N = a − 1), if 1 ≤ a ≤ n + 1, 1 ≤ b ≤ n + 1,

p
1−p Pa,2n+3−b, if 1 ≤ a ≤ n + 1, n + 1 ≤ b ≤ 2(n + 1),

p
1−p Pa,2n+3−b, if n + 1 ≤ a ≤ 2(n + 1), 1 ≤ b ≤ n + 1,

(1−p)P(N′′=b−n−2|N= a−n−2), if n+1≤ a≤2(n+1), n+1≤b≤2(n+1).

(14)

We note that the stochastic matrix P in (14) is irreducible, as every state b is accessible
from any state a in a finite update cycle duration. As Pa,a > 0 for all a in (14), the Markov
chain induced by P is also aperiodic. Thus, the above Markov chain admits a unique
stationary distribution given by the solution of π = πP, such that ∑1

i=0 ∑n
j=0 πij = 1,

πij ≥ 0, ∀i, j. Finally, we characterize the long-term average error among all the nodes
by (11).

In the following section, we proceed to approximate the probabilities PT,1(N) and
PT,2(N) provided in this section, to understand the effect of gossiping better when the
gossip rate λ is low and high compared to the information change rate at the source λe.

4. Analysis for High and Low Gossip Rates

In this section, we develop approximations for PT,1(N) and PT,2(N), which are the
probabilities of choosing xs at the end of a gossiping period when the nodes have the same
prior information with the source and when they do not, respectively. First, by assuming
sufficiently large n and N, we can approximate the conditional pmfs for Ri given in (7)
and (8) by the binomial distribution P(Ri|Ki = ki) ∼ Bin(ki, N+m

n ). Let us denote the
corresponding PT,1(N) and PT,2(N) obtained by substituting this binomial approximation
into (9) and (10) by P̂T,1(N) and P̂T,2(N), respectively. As P̂T,1(N) = P̂T,2(N) + P(Ki = 0),
for the rest of this section we will only approximate P̂T,2(N), and can find the proba-
bility P̂T,1(N) accordingly. Next, for sufficiently large values of ki, we can approximate
P(Ri ≥ ki

2 |Ki = ki) as

P
(

Ri ≥
ki
2
|Ki = ki

)
≈ Q

(√
ki A(N)

)
, (15)

where A(N)=
1
2−

N+m
n√

N+m
n (1−N+m

n )
and Q(x)= 1√

2π

∫ ∞
x e−

u2
2 du. We note that (15) is due to the

normal approximation of binomial distribution by using the central limit theorem (CLT).
In the following proposition, we show that P̂T,2(N) can be approximated by a summation
of Q-functions.
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Proposition 1. When λ is sufficiently large compared to λe, P̂T,2(N) can be approximated by

PT,app(N) =
∞

∑
ki=1

Q
(√

ki A(N)
)
P(Ki = ki). (16)

Proof. Using the CLT, there exists a sufficiently large K, such that the difference between
the probabilities P(Ri ≥ ki

2 |Ki = ki) and Q
(√

ki A(N)
)

is smaller than ϵ > 0. Then, we have

∣∣P̂T,2(N)−PT,app(N)
∣∣≤ K

∑
ki=1

∣∣∣P(Ri ≥
ki
2
|Ki = ki)−Q

(√
ki A(N)

)∣∣∣P(Ki = ki)+ϵ

(
λ

λ+λe

)K+1
,

where P(Ki = ki) =
(

λ
λ+λe

)ki λe
λ+λe

, for ki = 0, . . . , ∞. The above expression can be further
upper-bounded by

∣∣P̂T,2(N)−PT,app(N)
∣∣ ≤ 1 −

(
λ

λ+λe

)K+1
+ ϵ

(
λ

λ+λe

)K+1
.

As the term 1 −
(

λ
λ+λe

)K+1
can be made smaller than ϵ by choosing λ > λe(1−ϵ)1/(K+1)

1−(1−ϵ)1/(K+1) ,

the difference between P̂T,2(N) and PT,app(N) can be smaller than 2ϵ for every ϵ > 0 by
choosing sufficiently large λ.

Next, we show that P̂T,2(N) can be approximated by the summation of Q-functions
when λ is sufficiently large. In the following proposition, we show that as λ → ∞ the
probability P̂T,2(N) converges to a step function.

Proposition 2. As λ → ∞ the probability P̂T,2(N) converges to a step function given by

lim
λ→∞

P̂T,2(N) ≈


0, when N+m

n < 1
2 ,

1
2 , when N+m

n = 1
2 ,

1, when N+m
n > 1

2 .

(17)

Proof. First, we consider the case when N+m
n < 1

2 . In this case, we note that Q
(√

ki A(N)
)

is a decreasing function of ki. Thus, for any arbitrary ϵ1 > 0, there exists an L, such that
Q
(√

ki A(N)
)
< ϵ1, ∀ki > L. Therefore, we have

P̂T,2(N) <
L

∑
ki=1

Q
(√

ki A(N)
)
P(Ki = ki) + ϵ1

(
λ

λ + λe

)L+1
.

As Q
(√

ki A(N)
)
< 1

2 for ki ≥ 1, as in the proof of Proposition 1, by choosing sufficiently
large λ, one can show that P̂T,2(N) < 2ϵ1. Thus, if N+m

n < 1
2 , we have limλ→∞ P̂T,2(N) = 0.

Next, we consider the case when N+m
n > 1

2 . As Q(x) = 1 − Q(−x) for all x, we have

P̂T,2(N) =
∞

∑
ki=1

(
1 − Q

(
−
√

ki A(N)
))

P(Ki = ki).

Note that Q
(
−
√

ki A(N)
)

is a decreasing function of ki. Thus, for any ϵ2 > 0, there exists a
large L̂, such that Q

(
−
√

ki A(N)
)
< ϵ2. Therefore, we can write

P̂T,2(N) >
λ

λ + λe
−

L̂

∑
ki=1

Q
(
−
√

ki A(N)
)
P(Ki = ki)− ϵ2

(
λ

λ + λe

)L̂+1
.
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Now, similar to the first part of the proof, we can show that P̂T,2(N) > λ
λ+λe

− 2ϵ2 by
selecting a sufficiently large λ. Thus, when N+m

n > 1
2 , we have limλ→∞ P̂T,2(N) = 1.

Finally, when N+m
n = 1

2 , we note that the A(N) terms in (16) become 0, which implies
P̂T,2(N) ≈ PT,app(N) = 1

2 .

In Proposition 2, we showed that when the gossip rate λ is sufficiently large, the nodes
start to have access to information from all other nodes. As a result, all the nodes in the
network collectively start to behave like a single node, where at the end of a gossiping
period the information is updated based on the majority of the information at all nodes. In
other words, if the majority of the nodes have the same information as the source, which
happens if N+m

n > 1
2 , all the nodes update their information to xs and, thus, they will have

the same information as the source at the end of the gossiping period. On the other hand,
when the majority of the nodes have the incorrect information 1 − xs, which happens if
N+m

n < 1
2 , then all the nodes will have the incorrect information at the end of the gossiping

period. Therefore, when the information at the source changes frequently (i.e., λe is large)
and the source has limited total update rate capacity (i.e., λs is small), a high gossip rate λ
can cause incorrect information to disseminate in the network. As a result, gossiping can
be harmful in these scenarios. On the other hand, when the source has high transmission
rates, at each update cycle, it is enough for the source to send its information to the number
of nodes that achieves the majority, i.e., N+m

n > 1
2 . After that, the remaining nodes can

obtain the correct information during the gossiping phase. Thus, when the source has
enough transmission rate, high gossip rates among the nodes can be utilized by sending
the updates to at most half the network.

Next, we consider the case in which the gossip rate λ is relatively low compared to
the rate of information change at the source, λe. When the gossip rate is low, the nodes
either do not get any updates, in which case they hold on to their prior information, or
they mostly get only one update from the other nodes and, hence, update their information
based on the only received update. In the following proposition, we approximate the
probability P̂T,2(N) when λ is low.

Proposition 3. When λ is sufficiently small, the probability P̂T,2(N) can be approximated by

Plow
T,app(N) =

λ

λ + λe

N + m
n

. (18)

Proof. When λ is sufficiently low, the nodes may not receive any updates or receive
a single update packet from the other nodes in the gossiping phase. Thus, the nodes
that have the incorrect information 1 − xs as prior information obtain xs with probability
(1 − P(Ki = 0))N+m

n , which is equal to

Plow
T,app(N) =

λ

λ + λe

N + m
n

.

Next, we consider the difference between P̂T,2(N) and Plow
T,app(N), which is given by

∣∣P̂T,2(N)− Plow
T,app(N)

∣∣ ≤ ∞

∑
ki=2

P
(

Ri ≥
ki
2
|Ki = ki

)
P(Ki = ki) +

(
N + m

n

)(
λ

λ + λe

)2
.

As P(Ri ≥ ki
2 |Ki = ki) ≤ 1, we have

∣∣P̂T,2(N)−Plow
T,app(N)

∣∣ ≤ (
1+

N+m
n

)(
λ

λ + λe

)2
. (19)

Thus, when the gossip rate λ is sufficiently low compared to λe, the upper bound on (19)
can be made arbitrarily small, making the approximation P̂T,2(N) ≈ Plow

T,app(N) tight.
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Gossip Gain and an Adaptive Policy for Selecting Transmission Capacity

As a result of gossiping, when λ is low, the nodes that have the correct information xs
as prior information keep their information as xs with probability Plow

T,app(N) + P(Ki = 0),

which is given by P̂T,1(N) ≈ λ
λ+λe

N+m
n + λe

λ+λe
. Thus, when λ is small, the probability

P̂T,1(N) can be equivalently approximated by

P̂T,1(N) ≈ 1 − n − N − m
n

λ

λ + λe
. (20)

Therefore, when the gossip rate is low, we have

E[N′
1|N]=NP̂T,1(N) = N − λ

λ + λe

N
n
(n−N−m),

E[N′
2|N]=(n−N−m)P̂T,2(N)=

λ

λ+λe

m+N
n

(n−N−m).

Thus, at the end of the gossiping period, there are E[N′
1 + N′

2|N] +m = N +m+ λ
λ+λe

m
n (n−

N − m) nodes that have the same information as the source xs. If we consider the system
with no gossiping, where only the source can send updates to m nodes, at the end of an
update cycle most N + m nodes have the same information as the source. Thus, compared
to the system with no gossiping, the gain (error reduction) obtained as a result of gossiping
can be computed as

G(N) =
m
n2 (n − N − m)

(
λ

λ + λe

)(
λs

λs + λe

)m
, (21)

which is obtained by subtracting N + m from E[N′
1 + N′

2|N] + m and dividing the result

by n due to the definition of ∆. Note that the last term
(

λs
λs+λe

)m
in (21) is equal to the

probability of entering the gossiping phase.
Let us denote the average error for a system with no gossiping (that is, λ = 0) by

∆ng. If the gossip rate is low, the overall gain obtained from gossiping, |∆ − ∆ng|, can be
approximated by

|∆ − ∆ng| ≈ B(p)
n−m

∑
N=0

(π0N + π1N)G(N), (22)

where B(p) is a scaling function, in terms of p, to represent the effect of gossiping on the
steady-state distribution π.

When the gossip rate among the nodes is low, the gossip gain G(N) in (21) depends on
the selection of m. Therefore, if the source is allowed to dynamically choose its transmission
capacity m in terms of N, a natural choice is to adaptively select an m which maximizes the
gossiping gain by solving ∂G(N)

∂m = 0. Solving this equation in terms of m gives us

m∗(N) =
n − N

2
− 1

log ρs
−

√(
n − N

2

)2
+

(
1

log ρs

)2
, (23)

where ρs =
λs

λs+λe
. (We note that ∂G(N)

∂m = 0 has two solutions. The other solution is equal
to m∗(N) in (23) except that the square-root term has a positive sign. One can show that
this root is always larger than n − N and, thus, cannot be a feasible selection for m). In
fact, it is easy to see from (23) that the optimal solution m∗(N) always lies in the range
0 ≤ m∗(N) ≤ n−N

2 .
When the source has infinite transmission capacity, we have limλs→∞ m∗(N) = n−N

2 ,
which suggests that the source should send its information to at most half of the nodes
that carry incorrect information. In the other extreme case, when the source’s transmission
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capacity is equal to 0, we have limλs→0 m∗(N) = 0, in which case the source should not
send its information to any other nodes. In general, for a given λs, m∗(N) in (23) is a
decreasing function of N, which means that when N is small, i.e., when most of the nodes
have incorrect information, the source should send updates to a higher number of nodes.
As N increases, the source should send updates to a smaller number of nodes, as most
nodes carry the same information as the source. In the following section, in order to reduce
the average error, we implement clustering in the gossip network.

5. Average Error in Clustered Networks

In this section, we explore the idea of clustering in the gossip network, in order to
further reduce the average error. As illustrated in Figure 2, the gossip network is partitioned
into ms clusters with equal cluster size nc, i.e., without loss of generality, we assume that n
is divisible by ms and, thus, we have nc =

n
ms

. Each cluster has a designated cluster head
that is connected to the source directly. In the clustered network, when the information at
the source is updated, instead of sending updates to individual nodes directly, the source
only sends its information to cluster heads that carry different information compared to the
source. Thus, the source can send its information to a smaller number of cluster heads with
higher update rates. Furthermore, as the cluster heads behave like an information source
of each cluster, by using cluster heads, we can increase the total update rates going from
the source to the individual nodes while decreasing the total number of connections at the
gossip network. The downside of clustering is that if the information is updated during
transmission from the source to the cluster heads, information may not be disseminated to
individual nodes in the gossip network. Thus, we need to choose the number of cluster
heads ms optimally, to minimize the average error.

source

2
3

1

6
5

4

λe

λs

λ

λ
2

3

1

6
5

4

Figure 2. A clustered gossip network that consists of a source and ms = 2 cluster heads and fully
connected nc = 6 nodes.

At the update cycle I(j), let the number of cluster heads that have the same information
as the source be Ns(j), where 0 ≤ Ns(j) ≤ ms. Before the information at the source
is updated again, the source sends updates to Ksc(j) cluster heads with the following
probability distribution:

P(Ksc = ksc|0≤Ns ≤ms)=


(

λs
λs+λe

)ksc λe
λs+λe

, if ksc =0, . . . , ms−Ns−1,(
λs

λs+λe

)ms−Ns
, if ksc = ms − Ns.

(24)
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If Ksc < ms − Ns, it means that the information at the source is updated before all the
cluster heads obtain the information at the source. In this case, a new update cycle begins
and the source starts sending information to the cluster heads again. If all the cluster heads
obtain the most current information at the source, then the cluster heads start sending
their information to mc nodes within their corresponding cluster that carries different
information compared to the source with a total update rate of λ. (In this section, we
introduce the cluster heads as special nodes of the network, as in [10]. However, using
these special nodes may not always be possible, as they may result in additional costs for
the system. Considering these factors, we take the total update rate of the cluster heads as
λ, which is the same as that of the regular nodes at the clusters, which means that in the
absence of these special nodes, some of the nodes in the gossip network can be used as
cluster heads. As all the clusters in the network are identical, we focus on a typical cluster
and obtain the average error of a node within that cluster). In a typical update cycle I, we
define Nc as the number of nodes that carry the same information at the source. When
Nc <nc−mc, a cluster head sends updates to Kc nodes with the following pmf:

P(Kc = kc|Nc < nc − mc)=


(

λ
λ+λe

)kc λe
λ+λe

, if kc =0, . . . , mc−1,(
λ

λ+λe

)mc
, if kc = mc.

(25)

If Nc ≥ nc − mc, then we have

P(Kc = kc|Nc ≥ nc − mc) =


(

λ
λ+λe

)kc λe
λ+λe

, if kc =0, . . . , nc − Nc − 1,(
λ

λ+λe

)nc−Nc
, if kc = nc − Nc.

(26)

When Nc < nc − mc, if the cluster head sends updates to Kc = mc nodes, then the gossiping
phase starts and all the nodes within the same cluster share their local information with one
another. When the information at the source is updated, the gossiping phase ends, and the
nodes that do not get information directly from the cluster head update their information
based on the majority of the updates that they received during the gossiping phase.

In the next lemma, for a given state Ns, we provide the expression for the long-term
average error at the nodes within the clusters.

Lemma 1. Under the proposed clustered network structure, for a given Ns, the long-term average
error at the nodes within the clusters, denoted by ∆c|Ns , is given by

∆c|Ns =
nc

∑
j=0

nc

∑
n′′=0

(π0,j|Ns + π1,j|Ns)P(N′′
c = n′′

c |Nc = j, Ns)
nc − n′′

c
nc

, (27)

where P(N′′
c = n′′

c |Nc = j, Ns) is later provided in (30) and πNs = [π0,0|Ns , . . . , π0,nc |Ns , π1,0|Ns ,
. . . , π1,nc |Ns ] is the row vector of the steady-state distribution of the Markov chain formed over the
state space (xs, Nc). The unique stationary distribution is given by the solution of πNs = πNs PNs

for a stochastic matrix PNs ∈ R2(nc+1)×2(nc+1), where the transition probabilities of PNs can be
derived by replacing N′′, N, and n in (14) by N′′

c , Nc, and nc, respectively.

Proof. For a given Ns, the average error analysis with a clustered gossip network similarly
follows from Section 3. During the gossiping phase, node i receives Ki updates with
the pmf in (6). Similar to (7) and (8), we can rewrite P(Ri = r|Ki = ki, xi = xs) and
P(Ri = r|Ki = ki, xi ̸= xs) by replacing N and m with Nc and mc, respectively. Then, we can
define PT,1(Nc) and PT,2(Nc) as in (9) and (10), respectively. Before starting the gossiping
period, Nc nodes have xs and nc − Nc − mc nodes have 1 − xs as their prior information. At
the end of the gossiping period, we have N′

c = N′
c,1 + N′

c,2 nodes that have the information
xs, where N′

c,1 ∼ Bin(Nc, PT,1(Nc)) and N′
c,2 ∼ Bin(nc − Nc − mc, PT,2(Nc)). The pmf of N′

c
follows from (12), with ℓlower = max{0, n′

c + Nc + mc − nc} and ℓupper = min{Nc, n′
c}.
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Next, we define N′′
c to be the number of nodes in a cluster that have the same informa-

tion as the source at the end of an update cycle. For a given Ksc, Ns, and Nc, similar to (13),
the probability distribution of N′′

c is given by

P(N′′
c = n′′

c |Nc, Ns, Ksc = ms − Ns)=



P(Kc = kc|Nc < nc − mc),
if n′′

c = kc + Nc < mc,
P(Kc = mc|Nc < nc − mc)P(N′

c = n′
c),

if mc ≤ n′′
c = mc + n′

c < Nc,
P(Kc = n′′

c − Nc|Nc < nc − mc)

+P(Kc =mc|Nc <nc−mc)P(N′
c =n′′

c −mc),
if mc ≤ Nc ≤ n′′

c < Nc + mc,
P(Kc = mc|Nc < nc − mc)P(N′

c =n′′
c −mc),

if Nc + mc ≤ n′′
c ≤ nc,

P(Kc = n′′
c − Nc|Nc ≥ nc − mc),

if nc − mc ≤ Nc ≤ n′′
c ≤ nc.

(28)

When Ksc < ms − Ns, we have

P(N′′
c = n′′

c |Nc, Ns, Ksc <ms−Ns)=

{
1, if n′′

c =Nc,
0, otherwise.

(29)

From (28) and (29), we obtain

P(N′′
c = n′′

c |Nc, Ns) =P(N′′
c =n′′

c |Nc, Ns, Ksc =ms−Ns)P(Ksc =ms−Ns|Ns)

+ P(N′′
c =n′′

c |Nc, Ns, Ksc <ms−Ns)P(Ksc <ms−Ns|Ns). (30)

Finally, for a given Ns, the states (xs, Nc) form a Markov chain. Similar to the aver-
age error analysis in Section 3, we label the first nc + 1 states (0, 0), (0, 1), . . . , (0, nc) by
1, 2, . . . , nc + 1, and the last nc + 1 states (1, 0), (1, 1), . . . , (1, nc) by nc + 2, nc + 3, . . . , 2nc + 2.
The stochastic matrix PNs consists of Pc

a,b(Ns), which denotes the probability of moving
from state a to state b, and can be derived by replacing N′′, N, and n in (14) with N′′

c , Nc,
and nc, respectively. Then, we arrive at a unique stationary distribution πNs = πNs PNs that
satisfies ∑1

i=0 ∑nc
j=0 πi,j|Ns = 1 and πi,j|Ns ≥ 0 ∀i, j. Thus, for a given Ns, we can characterize

the long-term average error among all the nodes within the same cluster by (27).

In the following theorem, we state the long-term average error of the nodes at the
clusters and at the cluster heads.

Theorem 2. Under the proposed clustered network structure, the long-term average error of the
nodes at the clusters, denoted by ∆c = E[∆c|Ns ], is given by

∆c =
ms

∑
Ns=0

(πs
0,Ns

+ πs
1,Ns

)∆c|Ns , (31)

where πs = [πs
0,0, . . . , πs

0,ms
, πs

1,0, . . . , πs
1,ms

] is the row vector of the steady-state distribution of
the Markov chain with the state space (xs, Ns). The unique stationary distribution is given by
the solution of πs = πsPs for a stochastic matrix Ps ∈ R2(ms+1)×2(ms+1), where the transition
probabilities of Ps are given later in (34). Furthermore, the average error of the nodes at the cluster
heads, denoted by ∆s, is given by

∆s =
ms

∑
j=0

ms

∑
n′′

s =0
(πs

0,j + πs
1,j)P(N′′

s = n′′
s |Ns = j)

ms − n′′
s

ms
, (32)
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where P(N′′
s = n′′

s |Ns = j) is provided in (33).

Proof. In order to obtain the long-term average error ∆c = E[∆c|Ns ], we need to find
the probability distribution for Ns. For that, we note that in the clustered network, the
information at the source and the number of cluster heads that have the same information at
the source, i.e., (xs, Ns), also form a Markov chain. During the source’s update transmission
to the cluster heads, by using (24) we write the probability distribution for transition to
state N′′

s from state Ns, as follows:

P(N′′
s = n′′

s |Ns) =


(

λs
λs+λe

)n′′
s −Ns( λe

λs+λe

)
, if Ns ≤ n′′

s < ms,(
λs

λs+λe

)ms−Ns
, if n′′

s = ms.
(33)

The Markov chain formed by (xs, Ns) has the states (0, 0), . . . , (0, ms), (1, 0), . . . , (1, ms)
where we label these states from 1 to 2(ms + 1), correspondingly. Then, the stochastic matrix
Ps, consisting of Ps

a,b, which denotes the probability of moving from state a to state b and
is given by (34). Then, we can arrive at the unique stationary distribution πs = πsPs that
satisfies ∑1

i=0 ∑ms
j=0 πs

i,j = 1, and πs
i,j ≥ 0, ∀i, j. Finally, by using ∆c = E[∆c|Ns ], we obtain

the average error of a node in a cluster in (31).
Similarly, the average error at the cluster heads ∆s can be obtained by using (32) with

the stationary distribution πs and P(N′′
s = n′′

s |Ns) in (33).

Ps
a,b =


(1 − p)P(N′′

s = b − 1|Ns = a − 1), if 1 ≤ a ≤ b ≤ ms + 1,
p

1−p Pa,2ms+3−b, if 1 ≤ a, b − ms − 1 ≤ ms + 1,
p

1−p Pa,2ms+3−b, if 1 ≤ a − ms − 1, b ≤ ms + 1,

(1−p)P(N′′
s =b−ms−2|Ns = a−ms−2), if ms+2≤ a, b≤2(ms+1).

(34)

In general, the clustered networks can model a system where not all the nodes have
access to the source directly. In a way, cluster heads constitute a small group of nodes
that have the privilege of accessing the information source directly. These nodes can be
considered as paid subscribers to the source, while regular nodes can have free access to
the information through these paid subscribers and gossiping. Thus, looking at the average
difference between the errors at the cluster heads, ∆s, and at the regular nodes, ∆c, tells
us how much a regular node can increase its quality of information through subscription.
We can also imagine the clustered gossip networks in a way such that if every node is
connected (subscribed) to the source directly, the information quality at the individual
nodes may decrease due to the limited update capacity of the source. Instead, these nodes
may choose some nodes as subscribers and share the cost of the subscription. As a result,
through clustering, the nodes can decrease the cost of accessing the information while
increasing the overall quality of their information.

In the next section, we provide numerical results to shed light on the effects of gossip-
ing and clustering on information dissemination.

6. Numerical Results

This section has three subsections: in the first one, we discuss the numerical results
of the effects of various parameters, such as transmission capacity m, rate of information
change λe, information transmission rate at the source λs, gossip rate λ, and the num-
ber of nodes n on information dissemination in gossip networks; in the second one, we
provide simulation results to corroborate the analytical results in Section 4; in the third
one, simulations illustrate the results of Section 5—that is, the effects of clustering on
information dissemination.
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6.1. Simulations for the Effects of Various System Parameters on Information Dissemination

In the numerical results provided in this subsection, we provide real-time simulations
over 200,000 update cycles, and we provide the sample average errors with the markers in
Figures 3 and 4. In the first numerical study, we took p = 0.4, λe = 1, λs = 10, and n = 60.
We found the average error ∆ with respect to m when λ = {0, 10, 20}. Note that λ = 0
corresponded to the case of no gossiping among the nodes. We see in Figure 3a that when
m was small, i.e., when the source could send updates to a small number of nodes, the
average error ∆ increased with gossip rate λ. As m was small and the information change
rate p = 0.4 was high, incorrect information disseminated, due to gossiping in the network.
As a result, the system with no gossiping (λ = 0) achieved the lowest average error. When
we increased m sufficiently, the nodes started to have access to the same information as
the source, and gossiping helped to disseminate the correct information. That is why the
systems with gossiping—i.e., λ = 10, 20—achieved lower average error compared to the
system with no gossiping. The lowest average error ∆ was achieved when m = 25 for
λ = 10, 20 and m = 55 for λ = 0. Here, we also note that the average error ∆ was lower
when λ = 10 compared to λ = 20, which shows that for a given m, there is an optimal
gossip rate that achieves the lowest average error. Finally, increasing m further decreased
the probability of entering the gossiping phase, and that is why all the curves in Figure 3a
overlap when m ≥ 40.
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Figure 3. The average error ∆ with respect to (a) m when λ ∈ {0, 10, 20}, (b) the gossip rate λ for
m ∈ {5, 10, 15}, and (c) the source’s update rate λs for m = {5, 10, 15}.

In the second numerical study, we considered the same variable selections as in the
previous example except that we took m = {5, 10, 15} and changed λ from 0 to 40. We see
in Figure 3b that increasing the gossip rate λ initially helped to reduce the average error
∆. Then, increasing λ further increased ∆ as the incorrect information among the nodes
became more available. We see in Figure 3b that the minimum average error was obtained
when λ = 1 for m = 5, λ = 3 for m = 10, and λ = 6 or λ = 7 for m = 15. We note that as
the source sent updates to more nodes, the optimal gossip rate increased.

In the third numerical study, we considered p = 0.2, λe = 1, λ = 5, and n = 60. We
increased λs from 1 to 400 for m = {5, 10, 15}. We see in Figure 3c that increasing λs initially
decreased the average error ∆ faster. However, as ∆ depended also on the other parameters,
such as m and the gossip rate λ, increasing λs further did not improve the average error ∆
and it converged to 0.348 for m = 5, 0.21 for m = 10, and 0.144 for m = 15.

In the fourth numerical study, we considered the effect of the network size n on the
information dissemination. For that, first, we took p = 0.2, λe = 1, λ = 10, m = 8, and
n = {10, 20, . . . , 150}, and we increased λs = {0.1n, 0.2n, 0.5n} with the network size n.
In this case, as the network size increased, the source’s transmission rate also increased.
However, we kept the total number of nodes that the source could send updated to the
same, i.e., m = 8 for all n. In Figure 4a, when λs = {0.1n, 0.2n}, we see that the average
error ∆ initially decreased with n, as λs was initially a primary limiting factor. Increasing
n further increased ∆ as m became more important. That is why all these three curves
overlap each other when λs is sufficiently large. Then, we considered a scenario where
we kept λs = 4 and only increased m = {0.1n, 0.2n, 0.5n}. In Figure 4b, increasing the
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maximum number of nodes that the source could send updates to in an update cycle alone
did not reduce ∆ as n increased. As we increased n, λs became the presiding factor, and
all the curves in Figure 4b overlap. Finally, we increased both the source’s transmission
rate λs and capacity m with n, i.e., λs = {0.1n, 0.2n, 0.5n} and m = {0.1n, 0.2n, 0.5n}. As a
result, in Figure 4c, we observe that we could achieve a constant ∆ by increasing λs and m
proportional to n.
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Figure 4. Average error ∆ with respect to n (a) when λs ∈ {0.1n, 0.2n, 0.5n}, (b) when m ∈
{0.1n, 0.2n, 0.5n}, and (c) when m ∈ {0.1n, 0.2n, 0.5n} and λs ∈ {0.1n, 0.2n, 0.5n}.

6.2. Simulations for High and Low Gossiping Rates

In this subsection, we provide numerical results for the analysis developed for high and
low gossip rates in Section 4. Here, we also ran real-time simulations over 10,000,000 update
cycles. As m = 20, λs = 2, and λe = 1, out of 10,000,000 update cycles, approximately

in 10, 000, 000 ×
(

λs
λs+λe

)m
∼ 3000 update cycles, the system entered the gossiping phase.

As PT,1(N) and PT,2(N) were the probabilities of individuals that were able to obtain
the source’s information as a result of gossiping, the sample averages of PT,1(N) and
PT,2(N) were obtained approximately over 3000 update cycles, where the system entered
the gossiping phase. In the first numerical study, we verified the analytical results in
Propositions 1 and 2. For this simulation, we numerically evaluated PT,2(N) when n = 200,
m = 20, λs = 2, λe = 1, p = 0.2 for λ = {20, 200, 400}. Then, we compared PT,2(N) to
PT,app(N). In Figure 5, we observe that when λ was high compared to λe, PT,2(N) could
be approximated well by PT,app(N), which was given by the summation of Q-functions in
(16). Furthermore, due to Proposition 2, as we increased λ from 20 to 400, PT,app(N) and,
thus, PT,2(N) converged to a step function, i.e., when N < n

2 −m = 80, we observed that
PT,2(N) converged to 0, and when N> n

2 −m=80, PT,2(N) converged to 1 while we had
PT,2(80) = 0.5.
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Figure 5. A sample evolution of PT,2(N), which is approximated by PT,app(N) in (16) when λ is high
compared to λe for (a) λ = 20, (b) λ = 200, and (c) λ = 400.

In the remaining numerical studies, we considered the case when the gossip rate λ
was low compared to λe. In the second simulation, we evaluated PT,1(N) and PT,2(N)
with the same parameters except for λ = {0.1, 0.5, 1}. We have shown in Proposition 3
that when λ is low compared to λe, PT,2(N) can be approximated by Plow

T,app(N) in (18). We

see in Figure 6b that when λ = 0.1 and λ = 0.5, PT,2(N) matched closely to Plow
T,app(N) in
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(18). When λ = λe = 1, PT,2(N) could still be approximated well by Plow
T,app(N), but their

differences started to be noticeable. Similarly, for the low gossiping rate, we see in Figure 6a
that the approximation for PT,1(N) given in (20) was close when λ = {0.1, 0.5}. When the
gossip rate λ was low, during the gossiping phase, the nodes either did not receive any
updates, in which case they held on to their previous beliefs, or only got one update. That
is why in Figure 6b, when N was low, PT,2(N), which was the probability of having the
correct information as a result of gossiping for a node that had incorrect prior information,
was close to 0, and then it increased with N.
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Figure 6. A sample evolution of (a) PT,1(N) and (b) PT,2(N) approximated by (20) and (18), respec-
tively, when the gossiping rate is low.

In the third simulation study, when the gossip rate was low, we numerically found the
gossip gain (22), which was the difference between the average error with no gossiping
∆ng and the average error with gossiping ∆. For this example, we took n = 80, λ = 0.4,
λs = 10, λe = 1, and p = {0.3, 0.5, 0.7}. We plotted |∆ − ∆ng| with respect to m in Figure 7a.
We observed in Figure 7a that for all values of p, the gossip gain initially increased with
m as the source sent correct information to a sufficient number of nodes. Then, increasing
m further decreased the gossip gain as the probability of entering the gossiping phase
decreased in an update cycle. We observe in Figure 7a that the optimum gain was obtained
when m = 8 for all p values. We note that the scaling term B(p) in (22) was equal to 1.7,
1.1, and 0.8 for p = 0.2, p = 0.5, and p = 0.7, respectively. We also note that G(N) in (21)
decreased N in the next update cycle with probability p and increased N with probability
1 − p. Thus, the term B(p) in (22), which was the amplitude of the gossip gain, decreased
with p.
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Figure 7. (a) The gossip gain |∆ − ∆ng| in (22) with regard to m for p = {0.3, 0.5, 0.7}. (b) A sample
evolution of m∗(N) in (23) and its rounding to the nearest integer for different values of λs.
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Based on G(N) in (21), we can find the optimal m that maximizes the gossip gain
G(N) for each N, which is provided as m∗(N) in (23). So far, in this work, we have only
considered the case where m is kept constant for all update cycles. However, m∗(N) in (23)
decreases with N, which suggests a policy that selects m adaptively, depending on N. In
the next simulation result, we took n = 60, p = 0.2, λ = 10, λe = 1, and λs = {1, 5, 10}. In
Figure 7b, we plotted m∗(N) and their corresponding rounding to the nearest integer. We
see in Figure 7b that the source sent updates to more nodes as λs increased.

In the last simulation study, we compared the performances of the proposed adaptive
policy and the constant policy for selecting m. We considered n = 60, p = 0.2, λ = {0, 1, 5},
λe = 1, and varied λs from 1 to 200. We first implemented the adaptive-m transmission
policy by using the nearest integer rounding of m∗(N) in (23), which was denoted by
m̄∗(N). We then found the stationary distribution π and calculated the average m, using
E[m̄∗] = ∑n

j=0(π0j + π1j)m̄∗(N), which is depicted in Figure 8b. In order to make a fair
comparison, we took the nearest integer rounding of E[m̄∗], which is shown with the
dashed lines in Figure 8b, and implemented the constant m transmission policy. We see
in Figure 8a that the adaptive m policy (even without gossiping) achieved significantly
lower average error ∆ compared to the constant m policy. In Figure 8a, we also observe
that as the gossiping took place, especially when nodes had the correct information, the
average error ∆ decreased with the gossip rate λ. In the adaptive m selection policy, we
see in Figure 8b that increasing gossip rate λ not only achieved lower ∆ but also decreased
the source’s transmission capacity E[m̄∗]. Even though we found this policy for low gossip
rates (λ < λe), we observed that it was an effective transmission policy even for the higher
values of λ and could achieve lower ∆ compared to the constant m policy.
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Figure 8. The comparison between (a) the average error ∆ and (b) the average m for the adaptive m
and constant m selection policies.

6.3. Simulations for the Clustered Networks

In this subsection, we provide the results of simulations that illustrate the effects of
clustering on information dissemination. In the first numerical study, we chose λ = 10,
λs = 10, λe = 1, p = 0.4, and n = 120. We took mc = 5 and considered all ms values that
could divide n. In Figure 9, we plotted the long-term average error at the clusters, ∆c, and
at the cluster heads, ∆s. We see that increasing the number of cluster heads initially helped
to reduce ∆c as the update rates from the cluster heads to the nodes increased. We see in
Figure 9 that the minimum ∆c was achieved when ms = 15. Increasing ms further increased
∆c, as the average error at the cluster heads ∆s became large.

In the second numerical study, we compared the performances of the gossiping
networks with and without clustering when the source’s transmission capacity m had an
upper limit mlim = 12. For this numerical study, we took the same set of variables as in
the first numerical study, but we increased n = 12, 24, . . . , 96. For each n, we found the
optimum m for the network model without clustering and the optimum ms for the clustered
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network that minimized the average error at the nodes. We plotted the minimum average
error values in Figure 10a and the optimum m and ms selections in Figure 10b. We see in
Figure 10a that the average error with clustering, ∆c, was smaller than the average error
without clustering, ∆, for all values of n, although the source used its maximum capacity
m = mlim for n ≥ 24 in the network model without clustering, as shown in Figure 10b. For
the clustered network model, the optimal number of cluster heads mostly increased with n
and reached mlim for n ≥ 84.
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Figure 9. The long-term average error at the clusters, ∆c, and at the cluster heads, ∆s, as we increase
the number of clusters ms.
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Figure 10. The comparison between (a) the average errors ∆ and ∆c and (b) the optimum m selections
for the network models w and w/o clustering.

7. Conclusions and Future Directions

In this work, we considered information dissemination over gossip networks consist-
ing of a source that keeps the most up-to-date information about a binary state of the world
and n nodes whose common goal is to follow the binary state of the world as accurately
as possible. We first characterized the equations necessary to obtain the average error
∆ over all the nodes. Then, we provided analytical results for the high and low gossip
rates. As information became available among the nodes in the high gossip rates, all the
nodes behaved like a single node. In the low gossip case, we analyzed the gossip gain,
which was the error reduction compared to the system with no gossiping, and we obtained
m∗(N), which maximized the gain. This suggests an adaptive m selection policy using
m∗(N), where the source sends updates to more nodes if most of them have incorrect
prior information. Finally, we implemented a clustered gossiping network model and
characterized the average errors at the cluster heads and at the nodes in the clusters.

We would like to note that, in this paper, information change probability p and update
rate λe are taken as given exogenous parameters to the source. As time passes, the source
generates updates based on Poisson ticking with rate λe among which information is
reverted with rate pλe. Let us assume that pλe is fixed (while 0 < p < 0.5) and m is
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constant. As pλe is constant, information change rate over time does not change as we vary
λe. When λe is low (and, thus, p is relatively large), then information at the source is flipped
more frequently and the update cycle duration gets longer (as a result, the probability
of entering the gossiping phase is higher). As the information is flipped more often, the
majority of the nodes may have incorrect information. During the gossiping phase, this
may increase the average error, as incorrect information may be disseminated further in the
network. On the other hand, when λe is high while p is low, the information at the source
is updated more frequently, but information does not get mutated much. In this case, the
probability of entering the gossiping phase decreases and, thus, the system may not benefit
from gossiping. Therefore, for a fixed pλe, there should be an optimal p and λe selection
that minimizes the average error. We leave the optimization problem over λe as a future
research direction.

As a future direction of research, one could consider the problem where the informa-
tion at the source can take k > 2 different values based on a known pmf. Furthermore, here
we have considered only fully connected networks, and extending these results to arbitrar-
ily connected networks could be another interesting direction. One could consider a setting
where the source does not have access to the prior information on the nodes, and has to
select nodes randomly. In addition to the real-time simulation results, we would like to test
our results with the real-world datasets provided in [25]. Finally, one can consider a setting
where, although some nodes have the most accurate information, they maliciously send
incorrect information to others during the gossiping phase, thus increasing average error.
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