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Abstract— This paper is a compendium to a tutorial session
in the 2023 IEEE Conference on Decision and Control (CDC)
by the same authors listed here and carrying the same title.
The session (as well as this paper) addresses variations around
the basic linear-quadratic–Gaussian (LQG) control paradigm,
identifies the underlying challenges in such extensions, and
discusses some of their resolutions. The paper is organized
into four main parts, each one corresponding to a presentation
by one of the authors, as the section titles indicate. The first
part discusses stochastic control and stochastic games under
nonstandard (or nonclassical) information structures, which
have elements of signaling and incentive designs, including also
variations around the celebrated counterexample in stochas-
tic control due to Witsenhausen. The first part also covers
information transmission limitations in control, and rational
expectations models arising in economics. The second part
considers variations to stochastic LQ Nash and Stackelberg dif-
ferential games, deriving explicit equilibrium policies expressed
by Riccati equations. The third part describes approaches
to solving nonstandard LQ control problems to characterize
their feedback-type optimal controllers under three different
settings, namely (i) irregularity, (ii) delay state equations, and
(iii) asymmetric information structures. The last part provides
open-loop and closed-loop solvability analyses for LQ control
problems, establishing relationships between forward-backward
stochastic differential equations, the optimality condition, and
(differential/algebraic) Riccati equations.

I. INTRODUCTION

Since the late 1950’s, Linear-Quadratic-Gaussian (LQG)
theory (also known as stochastic linear-quadratic (LQ) con-
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trol theory) has been the dominating paradigm for feedback
control design for linear stochastic systems under noisy
state measurements with Gaussian statistics and quadratic
performance index [1], [12], [15], [16], [22], [24], [35], [37],
[38], [50], [103], [120], [122]. Its salient feature of separation
of estimation and control, allowing the optimal controller
to be one of the optimal linear-quadratic-regulator (LQR)
solution with simply the state replaced by its conditional
mean generated by the Kalman filter (or Kalman-Bucy filter),
made the optimal design easily implementable. Furthermore,
the optimal controller can be implemented by simply solv-
ing the associated (differential or difference or algebraic)
Riccati equations, instead of solving complex Hamilton-
Jacobi-Bellman PDEs (in the continuous time) or Bellman
difference equations (in the discrete time).

Various applications of the LQ control framework can be
found in economics, finance, engineering, and sciences. For
specific applications, we refer the reader to [1], [15], [16],
[33], [34], [37], [38], [47], [51], [59], [103], [120], [122],
[133], and the references therein. To list a few, the stochastic
LQ pollution level control problem was studied in [33], and
[133] considered the stochastic LQ mean-variance portfolio
optimization problem. The stochastic control problem of
electric water heating loads was studied in [51], the stochas-
tic power adjustment problem of wireless communication
networks was considered in [47], and the stochastic LQ
problem for queuing systems was considered in [59].

Most of the progress on LQ problems has been built on a
number of standard conditions (or assumptions), namely 1)
“Regularity”, that is, the parameters of the state equation and
the associated Riccati equation for designing the controller
are required to be sufficiently regular, and the parameters
in the cost function need to be sign-definite matrices; 2)
“Finite dimensions”, that is, the system under consideration
is described by ordinary differential equations and with no
time delays in most cases; and 3) “Symmetry”, that is,
the feedback information used by different controllers (in
a distributed control problem) is consistent. Questions were
naturally raised as to whether the earlier-mentioned attractive
and appealing features of the LQ theory are retained when
such standard conditions or assumptions are violated, or
when one takes variations around the basic model.

To capture general variations in LQ control problems,
we may consider the cases of “irregular” (singular control),
“infinite dimensional systems” (partial differential/time-delay
systems) or “asymmetry in information” (decentralized or
distributed control). An early paper that brought to the
attention of the control community the vulnerability of the
LQG-based design to a modest variation in the standard



symmetric information structure assumption, or in other
words the assumption that the controller has access to full
memory on the measurements it receives, was the one
by Witsenhausen [111], who produced a counter-example
showing that linearity of the optimal controller does not
always hold with such variations around the basic LQG
model. Specifically, Witsenhausen addressed a 2-stage scalar
LQG problem, showing that if the control at stage 2 does not
have access to the measurement of the control at stage 1, then
the basic linearity property of the standard LQG solution
breaks down, and the optimal solution (which exists) is then
nonlinear (even though its closed-form optimal structure is
still not known).

There are also other nonstandard assumptions or informa-
tion structures in LQ problems that have been considered
in the literature, such as: (i) having distributed control
inputs with decentralized information, (ii) having bandwidth
constraints (or probabilistic constraints) and/or sporadic fail-
ures on the channels that carry state information to the
controller(s) and/or controller inputs to the plant (generally
known as networked control), (iii) the plant or the channels
carrying information being vulnerable to adversarial attacks
(that is, worst-case designs, captured via the framework of
zero-sum dynamic games), and (iv) having multiple agents
with non-aligned objectives interacting over a network (that
is, a nonzero-sum differential/dynamic game framework).
These classes of LQ problems (hereafter referred to as
nonstandard LQ problems) are very complex, with each
one requiring a different set of tools for their analyses and
synthesis of appropriate optimal solutions (or policies, in a
broader framework). Some of these will be discussed in this
survey article.

Accordingly, we address in this paper selected nonstandard
deterministic and stochastic LQ problems, discussing the
underlying challenges and some of their resolutions. The
paper is organized into four main parts, along the lines of
the presentations of each author in the 2023 CDC tutorial
session.1

The first part (Section II) studies LQ problems under
nonstandard (or nonclassical) information structures, where
issues of signaling and incentive designs arise; it also
discusses in this context the counterexample (in stochastic
control) due to Witsenhausen and some variations around
it. This first part also covers information transmission limi-
tations in LQ problems caused by communication channels
being unreliable or bandwidth-limited. In addition, it covers
extensions to mis-aligned objectives (that is, game problems)
and variations on rational expectation models in economics.
The second part (Section III) considers several generaliza-
tions to multi-criteria LQ problems (particularly stochastic
LQ Nash and Stackelberg differential games), addressing
the “irregularity” condition and deriving the corresponding
equilibrium policies expressed by Riccati equations.

The third part (Section IV) describes approaches of solving

1In the paper, by necessity different notations and terminologies will be
used in different (sub)sections, but this difference will have minimum to no
impact on the delivery of the main contents.

LQ control problems to characterize their feedback-type op-
timal controllers under three different nonstandard settings,
namely (i) irregularity condition, (ii) delay state equations,
and (iii) asymmetric information structures. The last part
(Section V) provides open-loop and closed-loop solvability
analyses for LQ control problems, establishing relationships
between forward-backward stochastic differential equations,
the optimality condition, and (differential/algebraic) Riccati
equations. The paper ends with some concluding remarks,
and an extensive list of references.

II. VARIATIONS AROUND THE STANDARD LQG MODEL
(BY TAMER BAŞAR)

As we have mentioned in the Introduction, and as is well
known in the broad community that deals with decision-
making under uncertainty (not only control), the LQG model
(linear systems dynamics driven by control and Gaussian
independent increment noise process, where the control has
access to state information over a linear Gaussian channel,
and with a performance index that assigns quadratic positive
costs to the state and the control over the decision horizon)
admits a very appealing and easily implementable optimal
solution, where the optimal controller is the one of the
LQR (which is deterministic version of the LQG) with only
the state replaced by its least-squares estimate, generated
by the Kalman filter which is a dynamic system of the
same dimension as the system state, driven by the associ-
ated innovation process. This is true for both discrete- and
continuous-time formulations, and finite as well as infinite
decision horizons, with the implementation requiring the
solutions of two (uncoupled) Riccati equations (discrete-time
or continuous-time or algebraic, as appropriate). Stripping
away the details, one important property of the optimal
solution is that at any point in time the optimal controller
is a linear (affine if random quantities have nonzero means)
function of all the past measurements made, with each
past measurement appropriately weighted; in other words,
the solution requires access to full memory. Of course,
the Kalman filter conveniently prevents the “storage” from
growing with time, by generating the least-squares estimate
through a dynamical system of fixed dimension.

In this section we discuss several variations around that
basic model, which relax the modeling assumptions made in
different directions, such as bringing restrictions on memory,
allowing measurement channels to fail sporadically, and
the decision variables being controlled by different agents
with misaligned interests (that is multi-criteria game for-
mulations, including incentive design problems)–all in the
linear-quadratic setting. To convey the message(s) in simplest
possible settings without much clutter of notation, we stay
with discrete-time formulation, with two decision makers,
scalar quantities, but of course with dynamic information,
which still provides a rich landscape.

A. Restricted Memory

We start with the following two-stage stochastic control
or equivalently two-agent dynamic stochastic team problem,



where all quantities are scalar: A Gaussian random variable,
x, with mean zero and variance σ2

x is to be transformed into
another random variable, u0 = γ0(x), which is transmitted
over a Gaussian channel, y = u0 + w, with zero-mean
additive Gaussian noise w of variance σ2

w, the output, y,
of which is to be further transformed into another random
variable, u1 = γ1(y). The objective is to choose the transfor-
mations γ0 and γ1 in such a way that a performance index,
Q(x, u0, u1), quadratic in x, u0, and u1, is minimized in the
average sense. That is, we seek the pair γ∗ := (γ∗0 , γ

∗
1) such

that
J(γ∗) = min

γ
J(γ) =: J∗, (II.1)

where
J(γ) = E [Q(x, γ0(x), γ1(y))] (II.2)

with expectation, E[·], taken over the statistics of x and
w, which are assumed to be independent. Furthermore, the
minimization is over the space of all Borel-measurable maps,
that is both policies (decision rules) γ0 and γ1 are taken to
be Borel-measurable maps of the real line onto itself.

This is a stochastic decision problem with what is known
as nonclassical information, because the information to be
used by the decision rule, γ1, of the second agent depends on
the action, u0, of the first agent (and thereby on the decision
rule of the first agent), but the second agent does not have
access to the information of the first agent (that is, x). If
we view it as a single-agent problem where the agent acts
twice, then it is one where the agent is memoryless, that is it
does not remember what it had observed at the earlier stage.
As such, these problems belong to the realm of inherently
difficult decision problems for which a systematic solution
process does not exist, one of the main reasons being that
due to loss in memory, a sequential decomposition is not
possible.

Note that if the second agent also had access to x, then y
would provide useless information, and we would essentially
have a deterministic problem, admitting a linear optimal
solution (linear in x) for both agents (assuming that Q is
strictly convex in the pair (u0, u1). If the first agent did
not have perfect access to x, but observed it over a noisy
channel, such as y0 = x + w0, where w0 is another zero-
mean Gaussian random variable, independent of the others,
and if y0 was also accessible to the second agent (that
is, u1 = γ1(y0, y), u0 = γ0(y0)), then this fall within
the setting of LQG, and hence optimum γ1 and γ0 would
be linear in their arguments (again assuming the earlier
strict convexity condition). But with the memory restriction
as above, linearity of the optimal policies is no longer a
foregone conclusion, and as we discuss below it very much
depends on the structure of Q.

We now consider different instances of this class of prob-
lems, corresponding to different choices of the performance
index Q, some of which admit explicit, relatively simpler so-
lutions while some others do not. Hence the message will be
that it is not only the nonclassical nature of the information
structure but also the structure of the performance index that

contributes to the difficulty in solving these problems.
Let us start with the most general quadratic structure for

Q in terms of the 3 scalar variables (x, u0, u1);

Q(x, u0, u1) = c0(u0)
2+c1(u1)

2+au0u1+b0xu0+b1xu1,

where a, b0, b1, c0, c1 are scalar parameters. Note that we
have not included a quadratic term in x since it is not relevant
to (enter into) the optimization problem faced by the two
agents. Our focus here in three different sets of choices of
these parameters, with each set leading to an intrinsically
different optimization problems with totally different features
and requiring totally different solution techniques:

Set 1 (WIT):
{c1 = 1, c0 = 1 + k0, , b0 = −2k0, b1 = 0, a = −2},

where k0 > 0 is some parameter.2 This leads to the following
special structure for Q:

QW (x, u0, u1) = k0(u0 − x)2 + (u1 − u0)
2. (II.3)

Set 2 (GTC):
{c1 = 1, c0 = k0, , b1 = −2, a = −0}, where k0 > 0 is

some parameter.3 This leads to the following special structure
for Q:

QGTC(x, u0, u1) = k0(u0)
2 + (u1 − x)2 + b0u0x, (II.4)

Set 3 (ZSG):
{c1 = 1, c0 = 1 + k0, , b0 = −2k0, b1 = 0, a = −2},

where k0 < 0 is some parameter.4 This leads to the following
special structure for Q:

QW (x, u0, u1) = k0(u0−x)2+(u1−u0)2 , k0 < 0. (II.5)

Note that since k0 < 0, here the roles of the agents (players)
have changed. Now u0 is the maximizing variable, while u1
is still the minimizing variable. This makes the problem a
zero-sum game with the natural solution concept being one
of saddle-point equilibrium. Hence, (II.1) is replaced here
with

J(γ0, γ
∗
1 ) ≤ J(γ∗0 , γ

∗
1) ≤ J(γ∗0 , γ1), (II.6)

where J(γ∗0 , γ
∗
1) =: J∗ is the saddle-point value.

We now discuss the solutions to these three different
classes of problems, all variations to the general two-agent
LQ decision problem formulated at the beginning of this
subsection, in the same order as they are listed.

1-WIT:
This is essentially the Witsenhausen counterexample (WC)

mentioned earlier in the paper, which is a 2-stage LQG
control problem with no memory for the controller [111]. It is

2Here c1 = 1 is just normalization. Our discussion on the nature of the
solution to WIT will actually apply to a much larger set, where Q is strictly
convex in the pair (u0, u1) and a ̸= 0, that is c1 > 0, 4c1c0 > a2 > 0.

3Here again c1 = 1 is just normalization. Our discussion on the nature
of the solution to GTC will apply to a much larger set where the only
requirement is that a = 0 and Q is strictly convex in the pair (u0, u1),
that is both c1 and c0 be positive.

4Here again c1 = 1 is just normalization. Our discussion on the nature
of the solution to ZSG will again apply to a much larger set, where c1 > 0
and a ̸= 0. Note that it is not required that c0 > 0.



an invertible linear transformation that takes WC to the form
given here, and the two formulations are equivalent as far as
the optimal solution goes, as shown in [20] and [13]. Note
that the interpretation in this reformulation is that the first
agent (controlling u0) wants to stay as close to x as possible,
while the second agent (controlling u1) wants to stay as close
to the action of the first agent, u0, as possible. Witsenhausen
has shown in [111] that the optimal solution to this problem
exists, but the optimum decision rules are not linear. For the
latter, he has shown that there exist nonlinear policies which
outperform the best linear ones. A class of such nonlinear
policies introduced by Witsenhausen, and further improved
upon by Bansal and Başar [20] is

u0 = γo(x) = ϵ sgn(x) + λx ,

u1 = γ1(y) = E[ϵ sgn(x) + λx|y],

where ϵ and λ are parameters to be optimized over (in [111]
the values are picked as λ = 0 and ϵ = σx, and some
asymptotics are studied). Clearly, if ϵ = 0, this class of
decision rules will be linear, since E[λx|y] will be linear for
each λ, however when ϵ ̸= 0, the decision rules at both stages
will be nonlinear. For further discussion on this problem on
progress made since 1987, see [127].

2-GTC:

The second special structure introduced above arises in
communications- (with b0 = 0)-optimum transmission of a
(Gaussian) random variable from a source to a destination
over a noisy channel, for least squares estimation of that ran-
dom variable at the destination, which involves optimum de-
signs of an encoder (u0) and decoder (u1). More specifically,
here the second agent’s objective is to estimate the random
variable x in the minimum mean square (MMS) sense, using
a measurement that is transmitted over a Gaussian channel
where the input to the channel is shaped by the first agent
who has access to x and has a soft constraint (k0E[(u0)2])
on its action. The version of this problem, where the soft
constraint is replaced by a hard power constraint, E[(u0)2] ≤
k, is known as the Gaussian Test Channel (GTC), and in
this context γ0 is the encoder and γ1 the decoder, whose
optimal choice is clearly the conditional mean of x given y,
that is E[x|y]. The best encoder for the GTC can be shown
to be linear (a scaled version of the source output, x), which
in turn leads to a linear optimal decoder. The approach here
(which is in fact the only one known to apply to this problem)
is to obtain bounds on the performance using an inequality
from information theory involving channel capacity and rate
distortion function, and then showing that the bound can be
achieved using linear policies. This can be applied to the
generalized version formulated here (with b0 ̸= 0), leading
to the following solution:

γ∗0 (x) = −sgn(b0)
√
α∗

σx
x , (II.7)

γ∗1 (y) = E[x|y] = − sgn(b0)σx
√
α∗

α∗ + σ2
w

y , (II.8)

where α∗ is the unique positive solution of the polynomial
equation

[2k0
√
α− |b0|σx] [α+ σ2

x]
2 = 2σ2

wσ
2
x

√
α . (II.9)

Details can be found in [20], [13], and [127]. Extensions to
the case of multiple channels between the two agents can be
found in [19].

Remark II.1 The main difference between the two problems
WIT and GTC is that Q in the former has a product term
between the decision variables of the two agents while in
the latter it does not. Hence, it is not only the dynamic
(nonclassical) nature of the information structure but also
the structure of the performance index (cost function) that
determines whether linear policies are optimal in LQG multi-
stage decision problems.

The third special structure is similar to WIT but with the
roles of the two agents being conflicting, which is captured
by k0 being negative; as indicated earlier this constitutes a
zero-sum game with u0 now maximizing. First note that if
γ0 is linear in x, say γ0(x) = αx for some parameter α, then
the γ1 that minimizes J is also linear (and unique), being
the conditional mean of αx given y. Hence,

γ0(x) = αx ⇒ γ1(y) =
α2σ2

x

α2σ2
x + σ2

w

y.

Conversely, if γ1 is linear in y, say γ1(y) = λy for some
parameter λ, then provided that

k0 < −(λ− 1)2, (II.10)

which makes QG strictly concave in u0,5 the γ0 that maxi-
mizes J is also linear (and unique). Hence,

γ1(y) = λy ⇒ γ0(x) = − k0
k0 − (λ− 1)2

x

For these policies to constitute a saddle point, we have to
find a pair (α, λ) which simultaneously solve

λ =
α2σ2

x

α2σ2
x + σ2

w

α = − k0
k0 + (λ− 1)2

,

while satisfying the constraint (II.10).
Following these lines, it has been shown in [13] that the

game has a unique saddle-point solution as long as k0 < 0,
and the saddle-point policies are linear:

γ∗0(x) = − k0
k0 + (λ∗ − 1)2

x , γ∗1(y) = λ∗y.

where λ∗ is the unique solution of the polynomial equation
f(λ) = 0 in the interval (max(0, 1−

√
−k0), 1), where

f(λ) := (σ2
w/σ

2
x)λ

[
k0 −+(1− λ)2

]2
+ k20(1− λ) = 0.

Now uniqueness of the linear saddle-point solution in the

5If the condition (II.10) is not satisfied, then for the given γ1, the player
who chooses u0 can make the value of J arbitrarily large.



class of general Borel-measurable policies (and not only
linear) follows from the ordered interchangeability property
[16] of multiple saddle points, since the optimum response
of each player to an announced linear policy of the other
player is unique, as indicated above.

Extension to noisy access to x:
If u0 has access to noise corrupted version of x, that

is u0 = γ0(z), z = x + v, where v is a zero mean
Gaussian random variable, independent of x and w, then
the difficulty in obtaining the optimum solution to WIT is
naturally still there. For GTC and ZSG, on the other hand,
optimum solutions exist and the corresponding policies are
still linear. Details can be found in [13]. An important point
to be made here is that in these two classes of problems
(GTC and ZSG) certainty equivalence does not hold, that
is the solution is not of the type where one first solves the
deterministic version of the problem and then replaces the
random variables with their conditional mean values at the
solution point. On the other hand, one would normally expect
certainty equivalence to hold if the information structure is of
the classical type, that is (in this case) the agent acting at the
second stage has access to not only his private information y
but also z. This is indeed the case with team problems (which
then become standard LQG stochastic control problems), but
not necessarily for stochastic zero-sum games which feature
many pitfalls; for details we refer to [4] and [3].

Two extensions to GTC:
For the second setting, GTC, discussed in this subsection,

one important extension would be to have the channel be-
tween the two agents (encoder and decoder) to be susceptible
to adversarial action under some second moment constraint,
that is in addition to the Gaussian channel noise there is also
a jamming input to the channel, which could be correlated
with x (or z in the extended version). This then becomes
a 3-player zero-sum game, where the original two agents
(encoder and decoder) form a team (with still nonclassical
information) who minimize the objective function, whereas
the jammer (as the third agent) maximizes the same under a
hard constraint or a soft quadratic constraint attached to the
objective function. The solution concept is as in ZSG, that
of saddle point with the team of encoder-decoder playing
against the jammer. It has been shown in [5] that the saddle-
point solution for this quadratic decision problem is still
linear for the encoder-decoder pair, while for the jammer the
maximizing policy is to inject a zero-mean Gaussian noise,
possibly correlated with x (or z).

A second extension to GTC involves a multi-stage formu-
lation which entails a joint design of the control policy and
the measurement process. Consider the scalar discrete-time
plant

xn+1 = ρnxn + un + vn , n = 0, 1, . . .

along with the scalar measurement

yn = hn + wn , n = 0, 1, . . . ,

where {vn} and {wn} are i.i.d. Gaussian random variables,

with zero mean and independent of each other as well as of
the Gaussian initial state x0. The variable un is the control,
allowed to depend on the present and past values of y, and
hn is another decision variable (the sensor structure), which
has to be designed as a function of the current value of
the state, xn, and possibly also of the past values of y,
and this design has to be picked optimally, along with the
control, so as to minimize the expected value of a stage-
additive quadratic cost function. This is a dynamic decision
problem that features nonclassical information because un
and hn can be seen as the actions of two agents with the
decision of one affecting the information of the other, who
however do not share information. Employing the GTC result
sequentially, as well as sequential rate distortion theory,
this nonclassical stochastic control problem can be shown
to admit a linear optimal solution (for both un and hn)
[21]. Its continuous-time version (again scalar) also admits a
linear optimal solution [14], where now the continuous-time
Gaussian test channel with feedback is employed. None of
these results admit easy extensions to multivariable systems,
where optimum solutions (if they exist) will in general not
be linear.

B. Rational Expectation Models

Rational expectation models feature special types of state
dynamics that are driven by expectations of the future based
on current information or by control that is designed as a
result of optimizing a cost function that has multi-step future
value of the state. These dynamic models are called “forward
looking”, because the future behavior depends explicitly on
the expectations the agents have on the future itself (as
it happens in the stock market); and they are also called
“rational expectations models”, because the expectations on
the future outcomes are (or should be) formed on some
rational basis. For a background on such models, and for
details of the results given in this subsection, we refer the
reader to [10]. Perhaps the simplest such model is described
by the scalar difference equation:6

yt = ayt−1 + bEt−1yt−1 + ϵt , (II.11)

where a and b ̸= 0 are constant parameters, {et} is a
sequence of independent zero-mean random variables with
finite variance, and Et−1yt+1 := E[yt+1|ηt] is the condi-
tional expectation of yt+1 based on some information, ηt,
available at time t. The subscript t − 1 is used to capture
the assumption that this information ηt is based on the past
is based on the past values of the relevant state (of, say, of
the economy), that is {yt−1, yt−2, . . .} =: yt−1. A common
assumption is to let ηt = yt−1; but other formulations are
also possible, such as ηt = zt−1, where zt denotes some
“noisy” measurement on yt:

zt = yt + ξt , (II.12)

6We use here notation more in line with the literature on rational
expectations, such as the one adopted in [10], with state denoted by y
instead of the common control usage of x, but this should not create any
confusion as the material here is self-contained.



with {ξt} being another sequence of independent, zero-mean
random variables with finite variance.

The basic question addressed particularly in the economics
literature, rephrased in the above context, is whether there
exists a (unique) stochastic process {yt} that satisfies (II.11)
for all t of interest. It actually turns out that the solution
is actually not unique, which motivated a control-theoretic
approach to the problem, as introduced in [10]. We replace
(II.11) with the controlled state equation:

yt = ayt−1 + bvt + ϵt, (II.13)

where {vt} represents an aggregate decision variable, chosen
under the information restriction that vt = γt(ηt), for some
Borel-measurable function γt–the policy variable. Connect-
ing this with the earlier formulation, a rational choice for
γt would be to pick it so that vt is as close to E[yt+1Iηt]
as possible. A cost function that would capture this over a
horizon (0, T ] is

J(γ) =

T∑
t=0

E[(γt(ηt)− yt+1)
2]ρt, (II.14)

where ρ ∈ (0, 1) is a discount parameter. The gaol here is
to minimize J(γ) by properly choosing γ := {γ0, . . . , γT },
where the time horizon could also be infinite. Let us further
take the underlying statistics of the random variables to
be Gaussian. This is clearly a dynamic policy optimization
problem with LQG structure, but not of the standard type.
Still, its optimum solution can be shown to exist (whenever
ab ≤ 1/4), is unique, and linear in the information available
to the controller. In the perfect state measurement case, the
optimum controller is linear on the most recently available
value of y and the most recently applied control. In the noisy
measurement case, the most recently available value of y is
replaced by its conditional mean. The finite-horizon optimal
controller has a well-defined limit as T → ∞, which is
the stationary, stabilizing optimal controller for the infinite-
horizon problem (valid for both perfect and imperfect state
measurements). These results also admit comparable exten-
sions to the more general case where both the state process y
and control v are vector-valued; details can be found in [10].
There are also extensions (and substantial ones) to forward-
looking models where the original uncontrolled dynamics
(II.11) has an additional control input that aims at driving
the dynamics to a target value using an appropriate quadratic
cost function [9].

A second type of model with conditional expectations in
the cost:

A second type of variation around the LQG, of the
nonstandard type, which also has explicit dependence on
conditional mean (as above) has been addressed in [8].
The problem involves active learning, and is motivated
by a macro-economics model of credibility and monetary
policy, incorporating asymmetric information between the
private sector and the monetary authority. The former is
a passive player who simply forms conditional (rational)

expectations of the current inflation rate, which constitutes
the surprise component of the policy maker’s (the monetary
authority) objective function. The policy maker attempts to
maximize the objective function by choosing a control policy
which also affects the information carried to the passive
player whose rational expectations in turn influence the
performance of that policy. More precisely (deviating a bit
from the notation of [8], to be somewhat consistent with
the above, particularly by turning the original maximization
problem into a minimization one), the underlying multi-
stage stochastic decision-making (control) is formulated as
follows (again staying with the scalar version): Minimize,
over γ := {γ0, . . . , γT }, a Borel-measurable function, the
objective functional

J(γ) =

T∑
t=0

E[
1

2
(ut)

2 + xt(E[ut|ηt]− ut)]ρ
t , (II.15)

where ρ ∈ (0, 1) is again the discount factor, ut =
γt(ηt, xt), t = 0, 1, . . . is the control variable, ηt = yt−1 :
{y0, . . . , yt−1}, {xt} is the state process generated by

xt+1 = axt + ct + ϵt , t = 0, 1, . . . , (II.16)

and {yt} is the measurement process generated by

yt = ut + ξt . (II.17)

The random variables x0, {ϵt}, {ξt} are Gaussian, indepen-
dent, with x0 having nonzero mean, and others having zero
mean. Finally, ct is a nonzero scalar.

We note that the control {ut} enters the problem not
through the state equation (II.16), but through the message
(or measurement) process (II.17), and the cost function
(II.15) to be minimized. The presence of the conditional ex-
pectation term in (II.15) makes this a nonstandard stochastic
dynamic optimization problem of the first type considered in
this subsection; furthermore, the problem is what is known
as non-neutral since the choice of {ut} has a direct effect on
the content of the information carried by the measurement
process (II.17) regarding the state process {xt}, as it has
been the cases of WIT and GTC in Subsection II-A.

No standard approach of stochastic control can be applied
to this nonstandard dynamic stochastic optimization problem
to obtain its solution, and even to prove its existence. An
indirect approach has been developed in [8], which relates the
original single-person optimization problem to a sequence
of nested zero-sum games, for which existence of a unique
saddle-point solution has been shown (under some specific
conditions), with one of the policies in the saddle-point pair
being the policy that minimizes J(γ). One of its unique
aspects of this approach is the demonstration of the utility
of the powerful machinery of saddle-point equilibria even in
problems which are neither formulated as, nor can directly
be converted to, zero-sum games. Uniqueness here follows
from the ordered interchangeability of multiple saddle points
(as in the case of ZSG problem of Subsection II-A, since it
turns out that proposing linear solutions for this game lead
to unique responses. Finally, as already hinted just now, the



minimizing solution to (II.15) is linear, and actually in the
form

ut = γt(xt, ηt) = Lt

(
xt − E[xt|ηt]

)
, t = 0, 1, . . . ,

where {Lt} can be computed off-line. For the infinite-
horizon problem (that is, as T → ∞) this sequence con-
verges, providing the stationary minimizing solution to J(γ)
with T = ∞. Details can be found in [8].

C. LQG Control and Zero-Sum Games with Channel Con-
straints

We consider in this subsection two other types of varia-
tions around the LQG model, brought about by restrictions
on the communication or information transmission channels.
One of these (which most of the discussion below will
pertain to, and in discrete time) is probabilistic failure of
measurement channels, governed by Bernoulli processes. The
second one captures a different type of restriction on the
transmission channels, which is a constraint on the band-
width, necessitating quantization schemes to be developed.

Now, for the former type of restriction, we will in fact
consider the more general formulation of a zero-sum dynam-
ical game where the linear evolution of the state is driven by
the controls of two players (agents) with totally conflicting
objectives. More precisely, state’s evolution is described by

xt+1 = Axt +But +Dvt + Fwt , t = 0, 1, . . . , (II.18)

and the measurement equation is

yt = βt(Hxt +Gwt) , t = 0, 1, . . . , (II.19)

where x0 is a zero-mean Gaussian random vector; {wt}
is a zero-mean Gaussian process, independent across time
and of x0; and {βt} is a Bernoulli process, independent
across time and of x0 and {wt}, with Probability(βt = 0) =
p , ∀ t. This essentially means that the channel that carries
information on the state to the players, which is noisy, fails
with equal probability p at each stage, and these failures are
statistically independent. A different expression for (II.19)
which essentially captures the same would be

yt = βtHxt +Gwt , t = 0, 1, . . . , (II.20)

where what fails is the sensor that carries the state informa-
tion to the channel and not the channel itself. In this case,
when βt = 0, then this means that the channel only carries
pure noise, which of course is of no use to the controllers.

Now, if the players are aware of the failure of the channel
or of the sensor when it happens (which we assume to be
the case), then the control policies for the players are

ut = γt(y
t, βt) , vt = µt(y

t, βt) , t = 0, 1, . . . , (II.21)

where {γt} and {µt} are measurable functions of appropriate
dimensions; let us denote the spaces where they belong
respectively by Γ and M .

The quadratic performance index for the players in this

game is taken as

J(γ, µ) = E

{
T−1∑
t=0

[|xt+1|2Q + λ|ut|2 − |vt|2]dt

}
(II.22)

with u = γ(·), v = µ(·), where the expectation is over the
statistics of x0, {wt} and {βt},. Further, |x|2Q := xTQx,
Q is non-negative definite matrices, and λ > 0 is a scalar
parameter. Note that any objective function with nonuniform
positive weights on u and v can be brought into the form
above by a simple rescaling and re-orientation of u and v
and a corresponding transformation applied to B and D,
and hence the structure in (II.22) does not entail any loss of
generality as a quadratic performance index. .

The problem of interest is to find conditions for existence
and characterization of saddle-point strategies, that is (γ∗ ∈
Γ, µ∗ ∈ M) such that

J(γ∗, µ) ≤ J(γ∗, µ∗) ≤ J(γ, µ∗) , ∀ γ ∈ Γ, µ ∈ M .
(II.23)

We do not provide here the complete solution to this
problem, but just a few comments on several special cases;

(i) By taking F and G to be orthogonal to each other, one
captures the special case (more common in LQG) where
the system and measurement noises are independent.

(ii) If D = 0, then the maximizing player is no longer
present in the game, and this then becomes a stochastic
control problem with intermittently failing measure-
ment channel; for the solution to this problem, see
[48], where it is shown that the optimum controller
is of the certainty-equivalent type, with the state in
the LQR solution being replaced by its best estimate
given the channel failures; the paper also solves the
problem where transmission of control signals to the
plant is also done over channels that intermittently (and
independently) fail, in which case an adjustment to the
Riccati equation of LQR needs to be made.

(iii) If further (that is in addition to D = 0) p = 0, that
is if the channel never fails, then what we have is the
standard LQG setting.

(iv) If p = 0 but D ̸= 0, then we have a standard
stochastic zero-sum dynamic game of the LQG type,
which has been discussed in [4], (see also [3]) showing
that the appealing certainty equivalence and separation
properties of LQG do not hold in the entire parameter
space.

(v) Finally, if H = I and G = 0, we have the case
where the players have intermittent access to perfect
state measurements, which has also been discussed in
[3]; it has been shown within the context of a 2-stage
scalar problem, existence of a saddle point depends on
the value of p (it should be less than a certain threshold,
that is the failure probability should not be high) as well
as on λ (it should also be relatively small, that is not a
heavy toll on the effort level of the minimizer).

The second type of variation we mentioned in the opening
paragraph of this subsection entails bandwidth constraints,



necessitating appropriate quantization of signals before they
are are inputted the transmission channels which could be
links (in a control system) from sensors to controllers as well
as from controllers to the plants. The main question that is
raised (and is relevant) in this context is the design of the
best (optimum) quantization schemes and the corresponding
policies so that given the bandwidth constraints optimum
system performance is obtained (for, for example, an LQG
system). The turn of the millennium has witnessed rapid
growth in the number of papers that have contributed to this
topical area; these developments, until circa 2013, have been
discussed in a comprehensive way in the book by Başar and
Yüksel [127], One of the results from this period addresses
rate requirements for state estimation in discrete-time linear
time-invariant (LTI) systems where the controller and the
plant are connected via a noiseless channel with limited
capacity [125], establishing (using information-theoretic ar-
guments) the existence of optimal variable-length and fixed-
length quantizers and construction of such optimal quantizers
under three different stability criteria (namely, monotonic
boundedness of entropy, asymptotic stability of distortion,
and support size stability). It turns out that the uniform
quantizer is, in addition to being simple, quite efficient
in linear control systems. Another set of results, this time
involving continuous-time stochastic LTI systems (driven
by Brownian motion) and communication takes place over
noisy memoryless discrete- or continuous-alphabet channels,
featuring noise in both the forward channel (connecting
sensors to the controller) and the reverse channel (connecting
the controller to the plant) [126]. One of the main messages
is that for stability of the closed-loop system, it is necessary
that the entire control space and the state space be encoded,
and that the reverse channel be at least as reliable as the
forward channel.

D. Multi-criteria Variations

Another variation from the LQG framework entails going
from single agent (single controller) formulation to multiple
agents (controllers, players) each having a different objective
to optimize, with each objective function depending not only
on self decisions/actions but also on the decisions of (at least
a subset of) other agents. Within the natural noncooperative
framework, this brings us to the setting of nonzero-sum
dynamic games, where either Nash equilibrium or Stackel-
berg equilibrium is adopted as a solution concept depending
on whether the mode of decision making is symmetric
(Nash equilibrium) or asymmetric/hierarchical (Stackelberg
equilibrium) [16]. Even within the linear-quadratic-Gaussian
framework such a departure from single criterion to multiple
criteria brings along many challenges particularly under
asymmetric information among the players, since each player
would be second-guessing others, trying to decipher the
information that others have from their actions, which could
be useful in improving his performance—a process that leads
to an infinite recursion—still an active area of research. A
special case of such problems where there are only two
players, and with totally conflicting goals (that is the setting

of zero-sum games) does not exhibit all these challenges
because of some appealing properties of saddle-point equi-
librium (SPE), as we have seen earlier in this section. For
games that do not have the zero-sum structure, even with two
players, these appealing properties of SPE disappear when
it comes to Nash or Stackelberg equilibrium. Even multi-
player problems with a single objective function would lead
to a nonzero-sum game when the players do not see the world
the same way and have different subjective probabilistic
descriptions of the underlying random variables; see [7] for
extensive discussion and analyses of games with multiple
probabilistic models.

In this subsection we focus on one class of multi-criteria
hierarchical (Stackelberg) stochastic decision problems with
dynamic information, that arises in incentive designs, which
presents its own challenges. Perhaps the simplest such prob-
lem with two agents that captures the intricacies of dynamic
Stackelberg games (also known in this context as incentive
design problem) is the following: There are two agents (play-
ers), leader (L) and follower (F ), with action variables, uL
and uF , respectively. Consider three second-order random
variables, (x, y, z), with a known joint distribution (such as
Gaussian, known to both agents). L and F have different
objective functionals, QL(x;uL, uF ) and QF (x;uL, uF ),
respectively. The follower has access to the realized value
of z and the leader has access to (y, z, uF ), that is the
information structure of the game is ηL = {y, z, uF } for
L and ηF = {z} for F , so that uL = γL(ηL) and
uF = γF (ηF ), where γL and γF are policies for L and
F , picked as general measurable maps, belonging to appro-
priately constructed policy spaces, ΓL and ΓF , respectively.
Let JL(γL, γF ) and JF (γL, γF ) denote the expected val-
ues of QL(x; γL(ηL), γF (ηF )) and QF (x; γL(ηL), γF (ηF )),
respectively, with expectations taken over the statistics of
(x, y, z). This thus defines the normal form of the under-
lying game over the product strategy space ΓL × ΓF . The
Stackelberg solution one seeks is a pair (γ∗L ∈ ΓLγ

∗
F ∈ ΓF )

that satisfies:

sup
γF∈RF (γ∗)

JL(γ
∗
L, γF ) = inf

γL∈ΓL

sup
γF∈RF (γL)

JL(γL, γF ) .

(II.24)
where RF (γL) is the optimum reaction set of the follower
to L’s policy γL, that is

RF (γL) = {γF ∈ ΓF : γF = arg min
β∈ΓF

JF (γL, β)} ,
(II.25)

and γ∗F ∈ RF (γ
∗
L). This is a pessimistic version of the

Stackelberg equilibrium, where L takes the worst element
out of the reaction set RF , which is the most appropriate
one if this set is not a singleton. The other extreme would
be the optimistic one where in (II.24) sup is replaced by
inf , which relies too much on a cooperative behavior by
F . For a large class of problems, however, as also partially
discussed below, and fully in [6], RF (γ

∗
L) is a singleton, and

hence these different views on the Stackelberg solution do
not arise. Particularly, let us assume that all variables take
values in appropriate-dimensional Euclidean spaces, and the



cost functions QL and QF are each jointly continuous and
strictly convex in the pair (ul, uF ) (as a special case, and
more in line with the general theme of this paper, we can
take QL and QF to be general quadratic in their arguments).

Direct Approach:
Assuming that RF (γL) is a singleton for each γL ∈ ΓL,

a direct approach toward obtaining the Stackelberg solution
would entail the following steps:

(i) Obtain the unique optimum response by F to γL:
RF (γL).

(ii) Minimize JL(γL, RF (γL)) over γl ∈ ΓL: unique
minimizer γ∗L.

(iii) Combining (i) and (ii), the Stackelberg equilibrium is
(γ∗L, γ

∗
F = RF (γ

∗
L).

The challenge in this direct approach lies in the computation
of RF (γL), since JF (γL, γF ) is structurally dependent on
γL (for example, even with quadratic QF if the dependence
of γL(ηL) on uF is nonlinear, minimization in (i) will no
longer be quadratic; it could further be discontinuous in uF ,
which would lead to further difficulties in the minimization
of JF ). Hence, this direct approach, though looking simple
and straightforward on the surface, meets unsurmountable
difficulties, necessitating the development of an indirect
approach, as discussed next.

Indirect Approach:
We first note an obvious but important and consequential

observation regarding a lower bound on the Stackelberg
cost of L. Toward this end, let us first introduce the static
information set η̃L = {y, z}, and denote the corresponding
generic policy for L using this static information by fL. and
the corresponding policy space by FL. Then, we have

inf
γL∈ΓL,γF∈ΓF

JL(γL, γF ) = inf
fL∈FL,γF∈ΓF

JL(fL, γF )

≤ JL(γ
∗
L, γ

∗
F ) , (II.26)

where the equality follows because the minimum value of
JL with full cooperation of the two agents is the same
regardless of whether L has access to uF or not, since L has
access to the measurement of F . In the case of a quadratic,
strictly convex QL and with zero-mean Gaussian statistics,
this cooperative (team) optimization problem admits a unique
minimizing solution, where minimizing fL is linear in (y.z)
and γF linear in z. We now have the following steps that
lead to the Stackelberg equilibrium in view of the property
(II.26):

(i’) Find the optimum (team) performance for L with full
cooperation of F over the space of policies FL × ΓF :
(f tL, γ

t
F ) = argmin(fL,γF ) JL(fL, γF ).

(ii’) This generates a rich set of policies (γtL, γ
t
F ) in ΓL×

ΓF leading to the same cost value for L, where γtL sat-
isfies the side condition γtL(y, z;uF = γtF ) = f tL(y, z),
with one such class of policies being γL(y, z;uF ) =
f tL(y, z)+g(uf−f tF (z)), where g vanishes at the origin.

(iii’) Finding such a g then completes the solution to the
Stackelberg game, where using the incentive design
γL(y, z;uF ) induces F to respond in such a way that

his optimum policy, γtF , turns out to be the one most
favorable to L.

It has been shown in [6] that such an incentive design with
g taken as a linear function (or linear operator) exists for a
large class of problems (even those where QL and QF are not
necessarily quadratic), where the main tool used is the Hahn-
Banach Supporting Hyperplane Theorem. This approach and
construction can also be extended to stochastic games with
multiple hierarchies and partial dynamic information [11].

III. ADVANCES IN LINEAR-QUADRATIC STOCHASTIC
DIFFERENTIAL GAMES (BY JUN MOON)

Since the seminal paper of Fleming and Souganidis in
[39], stochastic differential games have been playing a
central role in mathematical control theory, as they can
be applied to model the general decision-making process
between interacting players under stochastic uncertainties.
Two different types of stochastic differential games can be
formulated depending on the roles of the interacting players.
Specifically, when the interaction of the players can be de-
scribed in a symmetric way, it is called the Nash differential
game. On the other hand, the Stackelberg differential game
can be used to formulate the nonsymmetric leader-follower
hierarchical decision-making process between the players.

This section provides an overview of some recent results
on stochastic LQ Nash and Stackelberg differential games.

A. Stochastic LQ Nash Differential Games with Random
Coefficients

Consider the linear stochastic differential equation driven
by the Wiener process W = (W1, . . . ,Wp):

dx(t) =
[
A(t)x(t) +B1(t)u1(t) +B2(t)u2(t)

]
dt (III.1)

+

p∑
i=1

[
σi(t) +Di(t)x(t)

]
dWi(t), t ∈ [0, T ],

where x ∈ Rn is the state with x(0) = a, u1 ∈ Rm1 is the
control of Player 1 and u2 ∈ Rm2 is the control of Player
2. In (III.1), the coefficients satisfy A : [0, T ]×Ω → Rn×n,
B1 : [0, T ] × Ω → Rn×m1 , B2 : [0, T ] × Ω → Rn×m2 ,
and Di : [0, T ] × Ω → Rn×n for i = 1, . . . , p, which are
uniformly bounded in (ω, t) ∈ Ω × [0, T ] and {Ft}t≥0-
adapted stochastic processes. Also, σi ∈ L2

F ([0, T ];Rn),
i = 1, . . . , p. The set of admissible controls for Player i,
i = 1, 2, is defined by

Ui := {ui(·) = Fi(·)x(·) + ψi(·) |
Fi ∈ CF ([0, T ];Rmi×n) and ψi ∈ L2

F ([0, T ];Rn)}.

The diffusion term in (III.1) consists of both state-
independent and state-dependent parts. The state-independent
part corresponds to σi(t)dWi(t), which can be viewed
as additive noise in (III.1). The state-dependent part is
Di(t)x(t)dWi(t), which is state multiplicative noise. Note
that from [122, Theorem 6.16, Chapter 1], for any (u1, u2) ∈
U1×U2, (III.1) admits a unique strong solution for any fixed
initial conditions.



We consider here the zero-sum game setting with a
quadratic objective functional to be minimized by Player 1
and maximized by Player 2:

J(u1, u2) =
1

2
E
[
|x(T )|2M (III.2)

+

∫ T

0

[
|x(t)|2S(t) + |u1(t)|2R1(t)

− |u2(t)|2R2(t)

]
dt
]
,

where M : Ω → Sn≥0 is an uniformly bounded (in ω ∈ Ω)
FT -measurable symmetric random matrix, and S : [0, T ] ×
Ω → Sn≥0, R1 : [0, T ] × Ω → Sm1 , R2 : [0, T ] × Ω → Sm2

are symmetric uniformly bounded in (ω, t) ∈ Ω × [0, T ]
and {Ft}t≥0-adapted matrix-valued stochastic processes. As-
sume Ri ∈ Smi

>0, i = 1, 2, i.e., they are symmetric uniformly
positive definite for (ω, t) ∈ Ω× [0, T ].

As already mentioned, in (III.2), Player 1 chooses u1 ∈ U1

to minimize it, while Player 2 selects u2 ∈ U2 to maximize
the same objective functional, making (III.2) the cost for
Player 1 and the payoff for Player 2. We could refer to this
problem as an LQ stochastic zero-sum differential game (LQ-
SZSDG) with random coefficients, where the corresponding
stochastic state equation includes both additive and state
multiplicative noises.

The objective of this subsection is to characterize a feed-
back Nash equilibrium (equivalently, saddle-point equilib-
rium) of the LQ-SZSDG. Specifically, from [16], the pair
(ū1, ū2) ∈ U1 × U2 constitutes the Nash equilibrium of the
LQ-SZSDG if it satisfies the following inequalities:

J(ū1, u2) ≤ J(ū1, ū2) ≤ J(u1, ū2), (III.3)

for any u1 ∈ U1 and u2 ∈ U2. Note that in (III.3), J(ū1, ū2)
is the optimal game value of the LQ-SZSDG (if it exists). We
characterize the explicit Nash equilibrium and the optimal
game value of the LQ-SZSDG.

We introduce the stochastic Riccati differential equation
(SRDE): for t ∈ [0, T ],

dP (t) = −
[
A⊤(t)P (t) + P (t)A(t) + S(t)

−P (t)B1(t)R
−1
1 (t)B⊤

1 (t)P (t)

+P (t)B2(t)R
−1
2 (t)B⊤

2 (t)P (t)
]
dt

−
∑p

i=1

[
D⊤

i (t)P (t)Di(t) +Qi(t)Di(t)

+D⊤
i (t)Qi(t)

]
dt+

∑p
i=1Qi(t)dWi(t),

P (T ) =M.

(III.4)

The n-dimensional linear backward stochastic differential
equation (BSDE) with random coefficients is (for t ∈ [0, T ])

ds(t) = −
[
A(t)−B1(t)R

−1
1 (t)B⊤

1 (t)P (t)

+B2(t)R
−1
2 (t)B⊤

2 (t)P (t)
]⊤
s(t)dt

−
∑p

i=1

[
D⊤

i (t)P (t)σi(t) +Qi(t)σi(t)

+D⊤
i (t)ri(t)

]
dt+

∑p
i=1 ri(t)dWi(t),

s(T ) = 0.

(III.5)

Theorem III.1 Consider the LQ-SZSDG with random
coefficients with (III.2) and (III.1). Suppose that
(P,Q1, . . . , Qp) ∈ CF ([0, T ]; Sn≥0)×L2

F ([0, T ];Sn, . . . ,Sn)
is the solution of the SRDE in (III.4) and (s, r1, . . . , rp) ∈

L2
F (Ω;C([0, T ];Rn)) × L2

F ([0, T ];Rn, . . . ,Rn) is the
solution of the BSDE in (III.5). Then the Nash equilibrium,
(u∗1, u

∗
2) ∈ U1 × U2, satisfying (III.3), can be written as{

u∗1(t) = −R−1
1 (t)B⊤

1 (t)P (t)x(t)−R−1
1 (t)B⊤

1 (t)s(t),

u∗2(t) = R−1
2 (t)B⊤

2 (t)P (t)x(t) +R−1
2 (t)B⊤

2 (t)s(t).

(III.6)

Moreover, the corresponding optimal game value of the LQ-
SZSDG under (III.6) is given by

J(u∗1, u
∗
2) = E

[1
2
|a|2P (0) + a⊤s(0) +

∫ T

0

Λ(t)dt
]
, (III.7)

where Λ(t) := 1
2

∑p
i=1 σ

⊤
i (t)P (t)σi(t) +∑p

i=1 σ
⊤
i (t)ri(t) − 1

2s
⊤(t)B1(t)R

−1
1 (t)B⊤

1 (t)s(t) +
1
2s

⊤(t)B2(t)R
−1
2 (t)B⊤

2 (t)s(t).

Note that (III.5) is a linear BSDE, which admits a unique
solution due to [122, Theorem 2.2, Chapter 7], provided
that the SRDE in (III.4) admits a unique solution. For the
solvability of the SRDE in (III.4), we have the following
result from [52, Proposition 2.1]:

Proposition III.1 Suppose that (B1(t)R
−1
1 (t)B⊤

1 (t) −
B2(t)R

−1
2 (t)B⊤

2 (t)) is uniformly positive definite
for (ω, t) ∈ Ω × [0, T ], i.e., (B1(t)R

−1
1 (t)B⊤

1 (t) −
B2(t)R

−1
2 (t)B⊤

2 (t)) > 0 for (ω, t) ∈ Ω × [0, T ]. Then
(III.4) admits a unique solution with (P,Q1, . . . , Qp) ∈
CF ([0, T ];Sn≥0)× L2

F ([0, T ];Sn, . . . ,Sn).

Remark III.1 (i) If all the coefficients in (III.1) and (III.2)
are deterministic, then it is easy to see that Qi =
ri = 0. In this case, the SRDE corresponds to the
deterministic RDE in LQ stochastic differential games
with deterministic coefficients studied in [68], [94].

(ii) Let R2(t) = µ2I with µ > 0. Then as µ → ∞,
Theorem III.1 is reduced to the one-player stochastic
optimal control problem with random coefficients in
[101, Theorem 3.2] and [27]. Under this limit, the
SRDE admits a unique solution in view of Proposition
III.1.

(iii) The condition in Proposition III.1 can be checked
easily, since it depends only on the system and cost
parameters. To solve (III.4) and (III.5), numerical
computation is essential. There are various numerical
approaches for solving BSDEs.

More detailed results on the LQ differential game studied
in this subsection can be found in [69].

B. Stochastic LQ Nash Differential Games for Mean-Field
Type Systems

Stochastic differential equations (SDEs), in which the ex-
pected values of state and/or control variables are included in
the drift and diffusion terms, constitute a class of mean field
SDEs (MFSDEs). The theory of MFSDEs can be traced back
to the study of McKean-Vlasov SDEs, a kind of MFSDEs,
for analyzing interacting large-scale particle systems at the
macroscopic level [49], [102]. Since then, there have been



concerted efforts on studying McKean-Vlasov SDEs and
their applications [31], [90].

Stochastic optimal control for MFSDEs and their ap-
plications have been studied extensively in the literature.
As mentioned in [26], [36], [119], the purpose of study-
ing stochastic optimal control for MFSDEs is to analyze
macroscopic behavior of large-scale interacting multi-agent
systems and reduce the impact of random effects on the con-
trolled state process. A complete solution to linear-quadratic
(LQ) stochastic optimal control for MFSDEs was obtained
in [119], where the linear feedback-type optimal solution
was obtained in terms of a Riccati differential equation. The
time-consistent optimal solution for LQ stochastic optimal
control of MFSDEs was characterized in [121]. Recently, the
linear-exponential-quadratic control problem for MFSDEs
was considered in [82], and the time-inconsistent mean-field
Stackelberg differential game was studied in [83].

Below, we provide a summary of the results in [70], which
considered the LQ mean-field (MF) zero-sum differential
game (ZSDG).

For a precise formulation of the ZSDG, consider the
following linear SDE driven by a one-dimensional Brownian
motion W :

dx(s) =
[
A1(s)x(s) +A2(s)E[x(s)] +B11(s)u1(s)

+B12(s)E[u1(s)] +B21(s)u2(s)

+B22(s)E[u2(s)]
]
ds

+
[
C1(s)x(s) + C2(s)E[x(s)]

+D12(s)E[u1(s)] +D11(s)u1(s) +D22(s)u2(s)

+D21(s)E[u2(s)]
]
dW (s), s ∈ [0, T ], . (III.8)

Here x ∈ Rn is state with x(0) = a, u1 ∈ Rm1 is control
of Player 1 and u2 ∈ Rm2 is control of Player 2; W
is the one-dimensional standard Brownian motion defined
on a complete filtered probability space (Ω,F , {Ft}t≥0,P),
where {Ft}t≥0 is the natural filtration generated by the
Brownian motion; and Ai(·), Bij(·), Ci(·) and Dij(·) with
i, j = 1, 2 are the coefficient matrices with appropriate di-
mensions, which are deterministic and continuous functions
on [0, T ].

In (III.8), the expected values of the state and the controls
are included, which are known as mean field of the state and
the controls. Hence, (III.8) can be regarded as a class of mean
field stochastic differential equations (MFSDEs), which has
been studied extensively in the literature, particularly, for re-
ducing variation of random effects on the controlled process
and macroscopic analysis of large-scale multi-agent systems.

The set of admissible controls for Player i, i = 1, 2, is
defined by

Ui = {ui : [0, T ]× Ω → Rmi : ui(·) is an

{Ft}t≥0-adapted process with E
∫ T

0

|ui(s)|2ds}.

Note that in view of [119, Proposition 2.6], for any u1 ∈ U1

and u2 ∈ U2, the MFSDE (III.8) admits a unique solution
satisfying E[sups∈[0,T ] |x(s)|2] <∞.

The quadratic objective functional for Players 1 and 2, as
minimizer and maximizer, respectively, is given by

J(u1, u2) (III.9)

=
1

2
E
[
|x(T )|2M1

+ |E[x(T )]|2M2
+

∫ T

0

[
|x(s)|2Q1(s)

+ |E[x(s)]|2Q2(s)
+ |u1(s)|2R11(s)

+ |E[u1(s)]|2R12(s)

+ |u2(s)|2R21(s)
+ |E[u2(s)]|2R22(s)

]
ds

]
,

where Qi(·),Mi ∈ Sn and Rij(·) ∈ Smi for i, j = 1, 2. In
(III.9), Qi(·), Mi and Rij(·) are the weighting matrices with
appropriate dimensions, which are deterministic continuous
(and therefore bounded) functions on [0, T ]. We note that
the weighting matrices need not be (positive and negative)
definite. For this zero-sum game, Player 1 minimizes (III.9)
by choosing u1, while Player 2 maximizes the same by
selecting u2. Then the problem corresponds to the linear-
quadratic mean field stochastic zero-sum differential game
(LQ-MF-SZSDG).

The main objective here is to obtain a (feedback) saddle-
point equilibrium (equivalent to the (feedback) Nash equi-
librium) for the LQ-MF-SZSDG. That is, the saddle-point
equilibrium (ū1, ū2) ∈ U1 × U2 of the LQ-MF-SZSDG
satisfies the following pair of inequalities [16]:

J(ū1, u2) ≤ J(ū1, ū2) ≤ J(u1, ū2), (III.10)

for any u1 ∈ U1 and u2 ∈ U2. In this case, J(ū1, ū2) is the
saddle-point value of the LQ-MF-SZSDG.

We first introduce the following notation:

Bi(·) =
[
B1i(·) B2i(·)

]
, i = 1, 2

D1(·) =
[
D11(·) D22(·)

]
D2(·) =

[
D12(·) D21(·)

]
Ri(·) = diag{R1i(·), R2i(·)}, i = 1, 2

Ā(·) = A1(·) +A2(·), Q̄(·) = Q1(·) +Q2(·)
B̄i(·) = Bi1(·) +Bi2(·), i = 1, 2

D̄1(·) = D11(·) +D12(·) D̄2(·) = D22(·) +D21(·)
B̄(·) =

[
B̄1(·) B̄2(·)

]
D̄(·) =

[
D̄1(·) D̄2(·)

]
C̄(·) = C1(·) + C2(·), M̄ =M1 +M2

R̄i(·) = Ri1(·) +Ri2(·), i = 1, 2

R̄(·) = diag{R̄1(·), R̄2(·)}.

Consider the following coupled Riccati differential equations



(CRDEs): for s ∈ [0, T ],

−dP (s)
ds = A⊤

1 (s)P (s) + P (s)A1(s) +Q1(s)

+C⊤
1 (s)P (s)C1(s)

−
[
(P (s)B1(s) + C⊤

1 (s)P (s)D1(s))

×(R1(s) +D⊤
1 (s)P (s)D1(s))

−1

×(P (s)B1(s) + C⊤
1 (s)P (s)D1(s))

⊤
]
,

P (T ) =M1,

(III.11)

and for s ∈ [0, T ],

−dZ(s)
ds = Ā⊤(s)Z(s) + Z(s)Ā(s) + Q̄(s)

+C̄⊤(s)P (s)C̄(s)

−
[
(Z(s)B̄(s) + C̄(s)P (s)D̄(s))

×(R̄(s) + D̄⊤(s)P (s)D̄(s))−1

×(Z(s)B̄(s) + C̄(s)P (s)D̄(s))⊤
]
,

Z(T ) = M̄.

(III.12)

Note that this is a one-way coupling, with RDE for Z in
(III.12) depending on P , but the RDE for P in (III.11) not
depending on Z. It can be seen that P,Z ∈ Sn. Let

Λ1(·) = (B⊤
11(·)P (·) +D⊤

11(·)P (·)C1(·))⊤

Λ2(·) = (B⊤
21(·)P (·) +D⊤

22(·)P (·)C1(·))⊤

Φ(·) =
[
Φ11(·) Φ12(·)
Φ⊤

12(·) Φ22(·)

]
,

where Φ11(·) = R11(·) + D⊤
11(·)P (·)D11(·), Φ22(·) =

R21(·)+D⊤
22(·)P (·)D22(·) and Φ12(·) = D⊤

11(·)P (·)D22(·).
Similarly, we define

Λ̄1(·) = (B̄⊤
1 (·)Z(·) + D̄⊤

1 (·)P (·)C̄(·))⊤

Λ̄2(·) = (B̄⊤
2 (·)Z(·) + D̄⊤

2 (·)P (·)C̄(·))⊤

Φ̄(·) =
[
Φ̄11(·) Φ̄12(·)
Φ̄⊤

12(·) Φ̄22(·)

]
,

where Φ̄11(·) = R̄1(·)+ D̄⊤
1 (·)P (·)D̄1(·), Φ̄22(·) = R̄2(·)+

D̄⊤
2 (·)P (·)D̄2(·) and Φ̄12(·) = D̄⊤

1 (·)P (·)D̄2(·).

Theorem III.2 Assume that the CRDEs (III.11) and (III.12)
admit solutions on [0, T ]. Suppose that Φ11(t) > 0, Φ̄11(t) >
0, Φ22(t) < 0 and Φ̄22(t) < 0 for t ∈ [0, T ]. Then the pair
(u∗1, u

∗
2) given by

u∗1(t) = −
[
Φ11(t)− Φ12(t)Φ

−1
22 (t)Φ

⊤
12(t)

]−1[
Λ⊤
1 (t)

−Φ12(t)Φ
−1
22 (t)Λ

⊤
2 (t)

]
(x(t)− E[x(t)])

−
[
Φ̄11(t)− Φ̄12(t)Φ̄

−1
22 (t)Φ̄

⊤
12(t)

]−1[
Λ̄⊤
1 (t)

−Φ̄12(t)Φ̄
−1
22 (t)Λ̄

⊤
2 (t)

]
E[x(t)],

u∗2(t) = −
[
Φ22(t)− Φ⊤

12(t)Φ
−1
11 (t)Φ12(t)

]−1[
Λ⊤
2 (t)

−Φ⊤
12(t)Φ

−1
11 (t)Λ

⊤
1 (t)

]
(x(t)− E[x(t)])

−
[
Φ̄22(t)− Φ̄⊤

12(t)Φ̄
−1
11 (t)Φ̄12(t)

]−1[
Λ̄⊤
2 (t)

−Φ̄⊤
12(t)Φ̄

−1
11 (t)Λ̄

⊤
1 (t)

]
E[x(t)],

constitutes a saddle-point (Nash) equilibrium of the LQ-
MF-SZSDG, i.e., the pair (u∗1, u

∗
2) satisfies the inequalities

in (III.10). Also, the corresponding saddle-point value is
J(u∗1, u

∗
2) =

1
2a

⊤Z(0)a.

A detailed analysis of this problem can be found in [70].
In addition, several different formulations of stochastic LQ
Nash differential games have been studied in [67], [68], [70],
[82], [94], [96], [99], [124] and the references therein.

C. Stochastic LQ Stackelberg Differential Games for Jump-
Diffusion Models

We now consider here a hierarchical formulation of an
LQ stochastic differential game, with one leader and one
follower. Let us have the following controlled stochastic dif-
ferential equation on [t, T ] driven by both a one-dimensional
Brownian motion B and a (compensated) Poisson jump-
diffusion process Ñ :

dx(s) =
[
A(s)x(s−) +B1(s)u1(s) +B2(s)u2(s)

]
ds

+
[
C(s)x(s−) +D1(s)u1(s) +D2(s)u2(s)

]
dB(s)

+
∫
E

[
F (s, e)x(s−) +G1(s, e)u1(s)

+G2(s, e)u2(s)
]
Ñ(de, ds), s ∈ [t, T ],

x(t) = a,

(III.13)

where, x ∈ Rn is the state process, u1 ∈ Rm1 is
the control of the leader, and u2 ∈ Rm2 is the control
of the follower. Let U1 := L2

F,p(t, T ;Rm1) and U2 :=
L2
F,p(t, T ;Rm2) be spaces of admissible controls for the

leader and the follower, respectively. Note that A,C :
Ω × [0, T ] → Rn×n, Bi, Di : Ω × [0, T ] → Rn×mi ,
i = 1, 2, F : Ω × [0, T ] → G2(E,B(E), λ;Rn×n),
Gi : Ω × [0, T ] → G2(E,B(E), λ;Rn×mi), i = 1, 2, are
Fs-predictable stochastic processes (random coefficients of
(III.13)), which are continuous in t ∈ [0, T ] and uniformly
bounded in a.e (ω, t) ∈ Ω × [0, T ]. We note that for any
(u1, u2) ∈ U1 ×U2, (III.13) admits a unique (strong) càdlàg
solution in C2

F(t, T ;Rn).
The objective functional to be minimized by the leader is

given by

J1(a;u1, u2) = E
[∫ T

t

[
|x(s)|2Q1(s)

+ |u1(s)|2R1(s)

]
ds

+ |x(T )|2M1

]
, (III.14)

and the objective functional of the follower is:

J2(a;u1, u2) = E
[∫ T

t

[
|x(s)|2Q2(s)

+ |u2(s)|2R2(s)

]
ds

+ |x(T )|2M2

]
. (III.15)

Here, Qi : Ω × [0, T ] → Sn and Ri : Ω × [0, T ] → Smi

i = 1, 2, are Fs-predictable stochastic processes (random
coefficients of (III.14) and (III.15)), which are continuous in
t ∈ [0, T ] and uniformly bounded in a.e (ω, t) ∈ Ω× [0, T ].
Also, Mi : Ω → Sn, i = 1, 2, are FT -measurable random
matrices, which are uniformly bounded in a.e. ω ∈ Ω.



The interaction between the leader and the follower in this
LQ Stackelberg game can be described as follows. The leader
chooses and announces her (or his) optimal solution to the
follower by considering the rational reaction of the follower.
The follower then determines his (or her) optimal solution
by responding to the optimal solution of the leader. We
refer to this problem as the linear-quadratic (LQ) stochastic
Stackelberg differential game for jump-diffusion systems with
random coefficients.

Under this setting, the problem can be solved in a reverse
way [16], [25], [123]. Specifically, the main objective of the
follower is to minimize (III.15) subject to (III.13) for any
control of the leader u1 ∈ U1, i.e., for any u1 ∈ U1,

(LQ-F) J2(a;u1, u2[a, u1]) = inf
u2∈U2

J2(a;u1, u2).

We note that from (LQ-F), u2 is an optimal strategy depen-
dent on (a, u1) ∈ Rn ×U1. Then given the optimal solution
of (LQ-F), the problem of the leader can be stated as follows:

(LQ-L) J1(a;u1, u2[a, u1]) = inf
u1∈U1

J1(a;u1, u2[a, u1]).

When the pair (u1, u2[a, u1]) ∈ U1×U2 in (LQ-F) and (LQ-
L) exists, we say that the pair (u1, u2[a, u1]) constitutes an
(adapted) open-loop type Stackelberg equilibrium for in the
Stackelberg game [16], [25], [83], [123].

A complete analysis of (LQ-F) and (LQ-L) is given in
[72]. Below, we discuss the main challenges and approaches.

As discussed above, we first need to solve (LQ-F). In
particular, using the stochastic maximum principle for jump-
diffusion systems, we obtain an open-loop type optimal solu-
tion for (LQ-F) in terms of the forward-backward stochastic
differential equation (FBSDE) with jump diffusions and
random coefficients, which explicitly depends on (a, u1) ∈
Rn × U1. Since the open-loop type optimal solution is not
implementable in practical situations, we have to obtain
its state-feedback representation in terms of the integro-
stochastic Riccati differential equation (ISRDE) by extending
the Four-Step Scheme of [123] to the case of general jump-
diffusion models. Then it is necessary to show that the
corresponding state-feedback type control is the optimal
solution for (LQ-F) via the completion of squares method.

Using the optimal solution of (LQ-F), the second step is
to solve (LQ-L). (LQ-L) is the (indefinite) LQ stochastic op-
timal control problem for FBSDEs with jump diffusions and
random coefficients, where the FBSDE constraint, induced
from (LQ-F), characterizes the rational reaction behavior of
the follower [16], [25]. It is necessary to obtain the stochastic
maximum principle for (LQ-L) using the variational ap-
proach and duality analysis. Then by the stochastic maximum
principle, the open-loop optimal solution for (LQ-L) should
be obtained in terms of the coupled FBSDEs with jump
diffusions and random coefficients.

The state-feedback representation of the open-loop optimal
solution of (LQ-L) in terms of the ISRDE can be obtained
by establishing the Four-Step Scheme for FBSDEs with
jump diffusions and random coefficients. Unfortunately, as
discussed in [72], there is a technical limitation, which did

not appear in [123]. This technical challenge arises due to
the coupling structure in the Four-Step Scheme between the
Brownian motion and the jump-diffusion process. Hence, we
have to consider two different cases of (LQ-L):

(i) the Poisson process N has jumps of unit size;
(ii) the jump part of (III.13) does not depend on the control

of the follower (G2 = 0).
In [72], the above two different cases of (LQ-L) are consid-
ered, and their complete treatments are provided.

We note that other variations of stochastic LQ Stackelberg
differential games including the classical results were studied
in [16], [18], [25], [30], [74], [77], [80], [83], [123] and
appropriate references therein.

IV. PROGRESS ON NONSTANDARD LQ CONTROL AND
APPLICATIONS IN NCSS (BY HUANSHUI ZHANG)

In this section, we study LQ problems under nonstandard
settings with (i) irregular condition, (ii) delay systems, and
(iii) asymmetric information structure.

A. Why Is It Difficult?

The challenges mentioned in Section I show that the
research on nonstandard LQ problems is still confronted with
fundamental obstacles. In order to solve these problems, it
is crucial to uncover the root causes of the complexity of
these challenges while figuring out how to resolve them.
Research by the author has shown that the root causes to
the challenges, which the nonstandard LQ control faces,
lie in problems in the decoupling solution of the state
forward equation and the adjoint-state backward equation
originated from the maximum principle. The main basis
is: the solution for optimal control includes two parts: 1)
deriving the maximum principle, that is, the state equation
is used as a dynamic constraint and the problem is translated
into an unconstrained quadratic optimization problem by
using the dynamic Lagrangian product factor, to get the
equilibrium condition and the backward equation satisfied
with the adjoint state; 2) decoupling forward and backward
differential/difference equations (FBDEs), that is, the adjoint
state is expressed in the form of a state, and then the solution
in the feedback form is obtained by using the equilibrium
condition. However, the main obstacle for nonstandard LQ
(irregular, infinite-dimensional and asymmetric) control lies
in the 2nd step mentioned above, decoupling FBDEs. The
following explains it in detail in terms of irregularity, infinite
dimension and asymmetry.

1) Irregular LQ control: Consider the continuous-time
linear system:

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, (IV.1)

and the quadratic performance:

JT (t0, x0;u) =

∫ T

t0

[x′(t)Qx(t) + u′(t)Ru(t)]dt

+ x′(T )Hx(T ), (IV.2)

where Q ≥ 0, R ≥ 0, H ≥ 0.



Minimizing JT (t0, x0;u), u(t) satisfies the following
equilibrium condition (maximum principle):

0 = Ru(t) +B′p(t), (IV.3)

where the adjoint state p(t) satisfies the backward equation:

ṗ(t) = −[A′p(t) +Qx(t)], p(T ) = Hx(T ). (IV.4)

Define the following Riccati equation:

0 = Ṗ (t) +A′P (t) + P (t)A+Q− P (t)BR†B′P (t),(IV.5)

with P (T ) = H and R† being the pseudo-inverse of R.
If

Range
(
B′P (t)

)
⊆ Range

(
R
)
, (IV.6)

the above-mentioned problem of optimal control is called
regular and the solution of FBDEs (IV.1), (IV.3), (IV.4) is
p(t) = P (t)x(t). Thus the controller is given by

u(t) = −R†B′P (t)x(t) + (I −R†R)z(t).

in which z(t) is any vector [50].
If

Range
(
B′P (t)

)
̸⊆ Range

(
R
)
, (IV.7)

then the corresponding optimal control is called irregular, and
p(t) ̸= P (t)x(t). Obtaining the solutions to FBDEs (IV.1),
(IV.3), (IV.4) faces challenges, which is the fundamental
reason why the irregular LQ has not be solved for a long
time although considerable efforts have been made since the
1970s.

In [42], [84], [110] and references therein, the singular LQ
control was studied by using “Transformation in state space”,
where the problem with zero control weighting matrix (R =
0) was studied. It was shown that the problem is solvable
if the initial value is given like x2(0) = C21(0)x1(0).
Otherwise, an impulse control must be applied at the initial
time [43]. In other words, the approach of “Transformation in
state space” is only applicable to the case of specified initial
value. In [28], [53], [131], the approach of “higher order
maximum principle” was applied to singular LQ control.
However, if the higher derivatives vanish, it is impossible
to find the singular control with this approach [41]. The
third approach is the perturbation approach in [32], [92]. The
optimal solution is obtained by using the limit of the solution
to Riccati equation when the perturbation is approaching to
zero.

2) Stochastic LQ control of time-delay system: Even
though the control problem of time-delay systems has
been well studied, especially for deterministic systems and
stochastic systems with additive noise [89], [91], the stochas-
tic LQ control with multiplicative noise remains unsolved.
Consider a continuous-time multiplicative-noise stochastic
system with time delay

dx(t) =
[
Ax(t) +Bu(t− h)

]
dt (IV.8)

+
[
Āx(t) + B̄u(t− h)

]
dw(t),

and quadratic performance:

J =E
[∫ T

0

x′(t)Qx(t)dt+

∫ T

h

u′(t− h)Ru(t− h)dt

+ x′(T )Hx(T )
]
,

where Q ≥ 0, R ≥ 0, H ≥ 0. In (IV.8), w is the standard
Brownian motion.

Minimizing J , u(t) satisfies the following equilibrium
condition (via the maximum principle):

0 = Ru(t) + E[B′p(t+ h) + B̄′q(t+ h)|Ft]. (IV.9)

where adjoint states p(t) and q(t) satisfy the following
BSDE:{

ṗ(t) = −
[
A′p(t) + Ā′q(t) +Qx(t)

]
dt+ q(t)dw(t),

p(T ) = Hx(T ).

(IV.10)

If h = 0, the above-mentioned problem represents the
standard stochastic LQ control, the solution of FBDEs (IV.8)-
(IV.10) is p(t) = P (t)x(t). Thus the controller is given by
u(t) = −[R+B′P (t)B]−1[B′P (t) +B′P (t)A]x(t) [33]. If
h ̸= 0, p(t) ̸= P (t)x(t). How to get solutions of FBDEs
(IV.8)-(IV.10) faces challenges, which is the fundamental
reason why the time-delay stochastic LQ control has been
open for a long time.

3) Information-asymmetric LQ control: Consider the fol-
lowing discrete-time system with two control inputs

xk+1 = Axk +B1u
1
k +B2u

2
k + wk, (IV.11)

two observations

y1k = H1xk + v1k, y
2
k = H2xk + v2k, (IV.12)

and quadratic performance

JN = E
{ N∑
k=0

[x′kQxk + (u1k)
′R1u

1
k + (u2k)

′R2u
2
k]

+ x′N+1HxN+1

}
. (IV.13)

Based on above-described observation, define an information
set: F{Y 2

k } = F{y20 , . . . , y2k, u20, . . . , u2k−1}, F{Yk} =
F{yi0, . . . , yik, ui0, . . . , uik−1, i = 1, 2}, obviously F{Y 2

k } ⊆
F{Yk}, called information inclusion pattern.

Assuming u1k is F{Yk}-adapted and u2k is F{Y 2
k }-

adapted, and minimizing JN , the control u satisfies the
following stationarity condition

0 = E[B′
1λk|F{Yk}] +R1u

1
k, (IV.14)

0 = E[B′
2λk|F{Y 2

k }] +R2u
2
k, (IV.15)

where the adjoint state λk satisfies the following backward
equation

λk−1 = E[A′λk +Qxk|F{Yk}],
λN = E[HxN+1|F{YN+1}], (IV.16)

The adaptability assumed for u1k and u2k is so different



that the above FBDEs are very complex. As a result, the
decentralized control in the case of information inclusion
has not been fundamentally solved although the special case
with sharing control information has been solved in discrete
time [44]. For some continuous-time results, see [17].

4) The key technique for nonstandard LQ control: For
FBDEs aiming at the above nonstandard LQ control prob-
lems, we have proposed a general method for decoupling the
solution process. The general idea is to: 1) use the backward
iterative induction method to obtain the solutions of FBDEs
in the discrete-time case; 2) use the method of discretizing
the continuous-time system and the one of approximating
results of discrete-time system to continuous-time case to
resolve the problems in decoupling solution of continuous-
time FBDEs. For detailed solution methods and results,
please refer to the references [118], [114], [66].

Since the decoupling problem of FBDEs is resolved,
problems in nonstandard LQ control of the type formulated
here have been fundamentally solved. Details can be found
further below as well as in [62], [128], [129].

B. Solutions to Nonstandard LQ Control

1) Irregular LQ control: The solution to irregular LQ
control is given below.

Theorem IV.1 Irregular LQ Control Problem is solvable
if and only if there exists a matrix P1(T ) satisfying 0 =
B′

0(T )[P (T )+P1(T )] such that the following modified cost

J̄0(t0, x0;u) = J0(t0, x0;u) + x′(T )P1(T )x(T ) (IV.17)

is regular and P1(T )x(T ) = 0 is achieved with the controller
minimizing (IV.17).

If the problem is solvable, the control is given as

u(t) = −R†(t)P̄ (t)x(t) + [I −R(t)R†(t)]z(t),

where the first part is to minimize the cost function (IV.17),
and z(t) is to guarantee P1(T )x(T ) = 0. Details can be
found in [129].

The general cases with additive noise and multiplicative
noise can be found in [115] and [130].

Remark IV.1 • It is obvious that P1(T ) = 0 for the
regular (standard) LQ control, while P1(T ) ̸= 0 for
the irregular LQ control. So an essential difference of
irregular LQ from regular one is that the irregular
controller (if exists) needs to do two things at the same
time: one is to minimize the cost (IV.17) and the other
is to achieve the terminal constraint P1(T )x(T ) = 0.

• In spite of this difference, the LQ control problem
(irregular and regular) can be solved in a unified way
as in Theorem IV.1.

2) Stochastic LQ control with time delay: To present the
solution, we define a differential Riccati-ZXL equation as

−Ż(t) = A′Z(t) + Z(t)A (IV.18)
+ Ā′X(t)Ā− L(t) +Q,

X(t) = Z(t) +

∫ t+h

t

eA
′(s−t)L(s)eA(s−t)ds, (IV.19)

where

L(s) = K ′(s)Ω(s)K(s) (IV.20)
Ω(s) = R+ B̄′X(s)B̄,

K(s) = −Ω−1(s)[B′Z(s) + B̄′X(s)Ā],

with the terminal values Z(T ) = P (T ) and X(T ) = P (T ).

Theorem IV.2 Stochastic LQ control with time delay is
uniquely solvable if and only if the differential Riccati-
ZXL equation (IV.18)-(IV.19) admits a solution satisfying
Ω(t) > 0 for h ≤ t ≤ T . In this case, the optimal control is

u(t− h) = K(t)x̂(t|t− h), (IV.21)

where

x̂(t|t− h) = eAhx(t− h) (IV.22)

+

∫ t

t−h

eA(t−θ)Bu(θ − h)dθ,

and the matrices Ω(t) and K(t) are given by (IV-B.2).
Moreover, the optimal cost is

J∗
T =

1

2
E

{∫ h

0

x′(t)Qx(t)dt (IV.23)

+ x′(h)
[
P (h)x(h)

−
∫ h

0

eA
′θΠ(h+ θ, h+ θ)eAθx̂(h|θ)dθ

]}
,

where P (h) = X(h),

x̂(h|θ) = eA(h−θ)x(θ) +

∫ h

θ

eA(h−τ)Bu(τ − h)dτ

Π(h+ θ, h+ θ) = L(h+ θ).

Details of the above can be found in [128].
The general cases of stochastic LQ control with multiple

input delays, state delay can be found in [58], [106], [66].

Remark IV.2 It is obvious that the result presented in
Theorem IV.2 includes the traditional stochastic control (i.e.,
h = 0) and deterministic control (i.e., Ā = 0, B̄ = 0)
as special cases. It is noted that the traditional stochastic
control problem has been extensively studied from 1960s due
to its wide applications. Plenty of progress has been made,
mainly including the stochastic maximum principle [107],
the design of the LQ controller based on generalized Riccati
equation [27] and the indefinite stochastic LQ control theory
[33]. The stochastic LQ control problem with time delay
has remained challenging due to the fact that the separation
principle does not hold any more, but Theorem IV.2 provides



the complete solution to it.

3) Information-asymmetric LQ control: To present the
explicit solution, we define the following coupled Riccati
equations:

Pk = A′Pk+1A−M ′
kΥ

−1
k Mk +Q, (IV.24)

Sk = A′Φk+1A− L0′

k Λ−1
k Lk +Q, (IV.25)

where

Mk = B′Pk+1A, (IV.26)
Υk = B′Pk+1B +R, (IV.27)

Φk = (Pk − Sk)G
2
k|k−1H2 + Sk, (IV.28)

L0
k = B′

1Φ
′
k+1A, (IV.29)

Lk = B′
1Φk+1A, (IV.30)

Λk = B′
1Φk+1B1 +R1, (IV.31)

with terminal values PN+1 = SN+1 = Θ.

Theorem IV.3 Assuming that Υk and Λk are invertible
for k = N, . . . , 0, the optimal controllers for information-
asymmetric LQ control are given by

uk = −Υ−1
k Mkx̂

2
k|k, (IV.32)

ũ1k = −Λ−1
k Lk(x̂

1
k|k − x̂2k|k), (IV.33)

where x̂2k|k and x̂1k|k are defined as

x̂1k|k = x̂1k|k−1 +Gk|k−1(yk −Hx̂1k|k−1), (IV.34)

x̂1k|k−1 = Ax̂1k−1|k−1 +Buk−1 +B1ũ
1
k−1, (IV.35)

x̂2k|k = x̂2k|k−1 +G2
k|k−1(y

2
k −H2x̂

2
k|k−1), (IV.36)

x̂2k|k−1 = Ax̂2k−1|k−1 +Buk−1, (IV.37)

where Gk|k−1 = Σ1
k|k−1H

′
(HΣ1

k|k−1H
′
+Qv)

−1, G2
k|k−1 =

Σ2
k|k−1H

′
2(H2Σ

2
k|k−1H

′
2 +Qv2)−1 and Σ1

k|k−1,Σ
2
k|k−1 are

the estimation error covariances, initial values are given
by x20|−1 = µ, Σ2

0|−1 = σ, and Υk,Mk,Λk, Lk are as in
(IV.24)-(IV.31). Accordingly, the optimal u1k =

[
I 0

]
uk +

ũ1k, and the optimal u2k =
[
0 I

]
uk. The optimal cost is

obtained as

J∗
N = E[x′0P0x̂

2
0|0 + x′0S0(x̂

1
0|0 − x̂20|0)] (IV.38)

+ tr(Σ1
N+1|N+1Θ)

+

N∑
k=0

tr
(
Σ1

k|k[Q−A′(Sk+1 − Φk+1

− Sk+1Gk+1|kH)A]

+ [Qω(Sk+1Gk+1|kH +Φk+1 − Sk+1)]
)
.

Details of the above can be found in [62].

Remark IV.3 It is noted that even though the studied infor-
mation structure satisfies F{Y 2

k } ⊆ F{Yk}, the problem is
completely different from that in the literature [44] because
the controller information of u1 is unknown for controller u2

which leads to solvability challenge. Also, it is different from
the results in [56] where the system is required to be with

nested structure and the common-information approach [86].
Moreover, the LQG problem with d-step delayed information
sharing pattern has been further solved in [117].

V. STOCHASTIC LINEAR-QUADRATIC OPTIMAL
CONTROL PROBLEMS – SOME RECENT RESULTS (BY

JIONGMIN YONG)

In this section, we provide a brief overview of some
additional recent results on LQ control problems.

Consider the following controlled linear ordinary differen-
tial equation (ODE, for short):{

Ẋ(t) = AX(t) +Bu(t), t ∈ [0, T ],

X(0) = x,
(V.1)

where X(·) is the state trajectory valued in Rn with x being
the initial state, and u(·) is a control function valued in
Rm; A ∈ Rn×n and B ∈ Rn×m are given matrices. We
refer to the above as the state equation. Clearly, for any
x ∈ Rn and u(·) ∈ U [0, T ], the set of all square integrable
functions (valued in Rm), (V.1) admits a unique solution
X(·) ≡ X(· ;x, u(·)).

To measure the performance of the control, one can
introduce the following cost functional:

J(x;u(·)) =
∫ T

0

(
⟨QX(t), X(t)⟩+ ⟨Ru(t), u(t)⟩

)
dt

+ ⟨GX(T ), X(T )⟩, (V.2)

where Q,G ∈ Sn, the set of all (n×n) symmetric matrices,
and R ∈ Sm. The two terms on the right-hand side of
the above are called the running cost and the terminal
cost, respectively. Then the classical optimal control problem
associated with the above linear state equation (V.1) and
quadratic cost functional (V.2) can be formulated as follows.

Problem (DLQ)T . For any x ∈ Rn, find a ū(·) ∈ U [0, T ]
such that

J(x; ū(·)) = inf
u(·)∈U [0,T ]

J(x;u(·)). (V.3)

If ū(·) ∈ U [0, T ] exists satisfying (V.3), we call it an
optimal control; the corresponding X̄(·) ≡ X(· ;x, ū(·))
and the pair (X̄(·), ū(·)) are called an optimal trajectory
and optimal pair, respectively. The above problem can be
regarded as linear-quadratic optimal control problem (LQ
problem, for short). The following collects the most basic
conclusions for Problem (DLQ)T .

Proposition V.1 For Problem (DLQ)T , the following holds:
(i) Let Problem (DLQ)T admit an optimal pair (X̄(·), ū(·)).

Then it is necessary that

R ⩾ 0, (V.4)

and the cost functional u(·) 7→ J(x;u(·)) is convex. More-
over, there exists a solution to the following ODE, called the
adjoint equation:{

Ẏ (t) = −
(
A⊤Y (t) +QX̄(t)

)
, t ∈ [0, T ],

Y (T ) = GX̄(T ),
(V.5)



such that the following stationarity condition holds:

B⊤Y (t) +Ru(t) = 0. (V.6)

(ii) Let the optimality system:
˙̄X(t) = AX̄(t) +Bū(t),

Ẏ (t) = −
(
A⊤Y (t) +QX̄(t)

)
,

X̄(0) = x, Y (T ) = GX̄(T ),

B⊤Y (t) +Rū(t) = 0.

(V.7)

admit a solution (X̄(·), ū(·), Y (·)), and u(·) 7→ J(x;u(·)) be
convex. Then, Problem (DLQ)T admits an optimal control.

(iii) Let functional u(·) 7→ J(x;u(·)) be uniformly convex,
and

R > 0. (V.8)

Let the following differential Riccati equation have a solution
P (·):{
Ṗ (t) + P (t)A+A⊤P (t)− P (t)BR−1B⊤P (t) +Q = 0,
P (T ) = G.

(V.9)
Then Problem (DLQ)T admits a unique optimal control ū(·),
and it has the following closed-loop representation:

ū(t) = −R−1B⊤P (t)X̄(t), t ∈ [0, T ]. (V.10)

The above will be the case if the following canonical condi-
tion holds:

Q,G ⩾ 0, R > 0. (V.11)

Study of the LQ problems for ODEs began with the
seminal works of Bellman–Glicksberg–Gross [22], Kalman
[50] and Letov [57] appeared around 1960. Standard results
for LQ theory of ODEs, including the above, can be found
in Lee–Markus [55], Anderson–Moore [1], Willems [109],
Wonham [113], and others. See also Yong–Zhou [122].

From the above results, we see that associated with the LQ
problem, there are several notions closely related: Existence
(and uniqueness) of optimal control, (uniform) convexity of
the cost functional, optimality system (two-point boundary
value problem), Riccati equation, closed-loop representation.
It seems that they are almost equivalent somehow. It is a
desire to make these relations clear.

On the other hand, study of stochastic LQ problems
began with the works of Kushner [54] and Wonham [112]
in the 1960s. See also Davis [35], Bensoussan [24], and
others for classical stochastic LQ theory. In 1998, Chen–
Li–Zhou [33] found that for stochastic LQ problems, the
weighting matrices in the cost functional could be indefinite
to some extent; in particular, (V.4) is not necessary for the
existence of optimal control for the corresponding stochastic
LQ problem. See Yong–Zhou [122] for some presentation
of the updated theory by the end of the last century. Since
the early 2010s, the authors of this paper, together with
their collaborators, started to investigate the LQ problems
for stochastic differential equations from a different angle.
Notions of finiteness, open-loop and closed-loop solvability
were introduced, together with the relationship among them
and to the other relevant notions, as well as their characteri-

zations. More precisely, the following have been established
for stochastic LQ problems in finite time-horizons, denoted
by Problem (SLQ)T :

• If Problem (SLQ)T is finite, then the cost functional is
convex in the control process.

• The closed-loop solvability implies the open-loop solv-
ability, but not vice versa in general.

• The open-loop solvability is equivalent to the solvability
of the optimality system, which is now a forward-
backward stochastic differential equation (FBSDE, for
short), plus the convexity of the cost functional.

• The closed-loop solvability is equivalent the regular
solvability of a differential Riccati equation, which
implicitly implies that the cost functional is convex.
In this case, the problem is also open-loop solvable
and any open-loop optimal control admits a closed-loop
representation (or called state-feedback representation),
which must be an outcome of the closed-loop optimal
strategy.

• If the cost functional is uniformly convex, then Problem
(SLQ)T is uniquely closed-loop solvable, and thus also
uniquely open-loop solvable.

For LQ problems in the infinite time-horizon, denoted
by Problem (SLQ)∞, under the stabilizability condition, the
square integrability of the nonhomogeneous terms and linear
weight processes, the following are established:

• If Problem (SLQ)∞ is finite, then the cost functional is
convex in the control process.

• When the cost functional is convex, the following are
equivalent:

– Problem (SL)∞ is open-loop solvable;
– Problem (SLQ)i is closed-loop solvable;
– An FBSDE over [0,∞) admits an L2-stable

adapted solution;
– An algebraic Riccati equation admits a stabilizing

solution.
See Sun-Yong [98] for a detailed comprehensive presentation
of these results.

VI. CONCLUDING REMARKS

In this survey paper, we have studied several different
formulations on nonstandard LQ decision-making problems,
and discussed the underlying challenges and some of their
resolutions. This is clearly not a comprehensive review. There
are other numerous formulations, approaches, and results on
LQ problems, both of theoretical nature and those that arise
in applications. The readers are directed to the references
cited for other variations and applications of the rich LQ
framework.

One recent research direction of LQG control is to connect
it with learning. The main concern there is to learn model
and cost parameters from environment and find efficient
learning models and rates, similar to those in reinforcement
learning. Some representative results in this direction can
be found in [2], [29], [87], [104], [105], [132], and the
references therein.
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[78] J. Moon and T. Başar, “Minimax control over unreliable communi-
cation channels,” Automatica, vol. 59, pp. 182–193, 2015.

[79] ——, “Minimax estimation with intermittent observations,” Automat-
ica, vol. 62, pp. 122–133, 2015.

[80] ——, “Linear quadratic mean field Stackelberg differential games,”
Automatica, vol. 97, pp. 200–213, 2018.

[81] ——, “Dynamic programming and verification theorem of recursive
stochastic control problem for jump-diffusion models with random
coefficients,” IEEE Transactions on Automatic Control, vol. 67,
no. 12, pp. 6474–6488, 2022.

[82] J. Moon and Y. Kim, “Linear-exponential-quadratic control for mean
field stochastic systems,” IEEE Transactions on Automatic Control,
vol. 64, no. 12, pp. 5094–5100, 2019.

[83] J. Moon and H. J. Yang, “Linear-quadratic time-inconsistent mean-
field type Stackelberg differential games: Time-consistent open-loop
solutions,” IEEE Transactions on Automatic Control, vol. 66, no. 1,
pp. 375–382, 2021.

[84] J. Moore, “The singular solutions to a singular quadratic minimiza-
tion problem,” International Journal of Control, vol. 20, pp. 383–393,
1974.

[85] L. Mou and J. Yong, “Two-person zero-sum linear quadratic stochas-
tic differential games by a Hilbert space method,” Industrial &
Management Optim., vol. 2, pp. 95–117, 2006.

[86] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochastic
control with partial history sharing: A common information ap-
proach,” IEEE Transactions on Automatic Control, vol. 58, no. 7,
p. 1644–1658, 2013.

[87] Y. Park, R. Rossi, Z. Wen, G. Wu, and H. Zhao, “Structured policy
iteration for linear quadratic regulator,” in Proceedings of the 37th
International Conference on Machine Learning, 2020.

[88] M. A. Rami and X. Y. Zhou, “Linear matrix inequalities, Riccati
equations, and indefinite stochastic linear quadratic controls,” IEEE
Transactions on Automatic Control, vol. 45, no. 6, pp. 1131–1143,
2000.

[89] D. W. Ross, “Controller design for time lag systems via a quadratic
criterion,” IEEE Transactions on Automatic Control, vol. 16, no. 6,
pp. 664–672, 1971.

[90] M. Scheutzow, “Uniqueness and non-uniqueness of solutions of
Vlasov-McKean equations,” Journal of the Australian Mathematical
Society, vol. 43, no. 2, pp. 246–256, 1987.

[91] O. J. Smith, “A controller to overcome dead time,” ISA Journal,
vol. 6, no. 2, pp. 28–33, 1959.

[92] J. Sun, X. Li, and J. Yong, “Open-loop and closed-loop solvabilities
for stochastic linear quadratic optimal control problems,” SIAM
Journal on Control and Optimization, vol. 54, pp. 2274–2308, 2016.

[93] J. Sun, J. Xiong, and J. Yong, “Indefinite stochastic linear-quadratic
optimal control problems with random coefficients: Closed-loop
representation of open-loop optimal controls,” Annals of Applied
Probability, vol. 31, pp. 460–499, 2021.

[94] J. Sun and J. Yong, “Linear quadratic stochastic differential games:
open-loop and closed-loop saddle points,” SIAM J. Control & Optim.,
vol. 52, pp. 4082–4121, 2014.

[95] ——, “Stochastic linear quadratic optimal control problems in infinite
horizon,” Appl. Math. Optim., vol. 78, pp. 145–183, 2018.

[96] ——, “Linear quadratic stochastic two-person nonzero-sum differen-
tial games: open-loop and closed-loop Nash equilibria,” Stoch. Proc.
Appl., vol. 129, pp. 381–418, 2019.

[97] ——, Stochastic Linear-Quadratic Optimal Control Theory: Differ-
ential Games and Mean-Field Problems. Springer, 2020, Springer
Brief in Math.

[98] ——, Stochastic Linear-Quadratic Optimal Control Theory: Open-
Loop and Closed-Loop Solutions. Springer, 2020, Springer Brief in
Math.

[99] J. Sun, J. Yong, and S. Zhang, “Linear quadratic stochastic two-
person zero-sum differential games in an infinite horizon,” ESAIM:
COCV, vol. 22, pp. 743–769, 2016.

[100] S. Tang, “General linear quadratic optimal stochastic control prob-
lems with random coefficients: linear stochastic Hamilton systems
and backward stochastic Riccati equations,” SIAM J. Control Optim.,
vol. 42, pp. 53–75, 2003.

[101] ——, “Dynamic programming for general linear quadratic optimal
stochastic control problems with random coefficients,” SIAM J.
Control Optim., vol. 53, pp. 1082–1106, 2015.

[102] H. P. McKean, “A class of Markov processes associated with non-
linear parabolic equations,” Proceedings of National Academy of
Science (PNAS) of the United States of America, vol. 56, pp. 1907–
1911, 1966.



[103] N. Touzi, Optimal Stochastic Control, Stochastic Target Problems,
and Backward SDE. Springer, 2013.

[104] M. A. uz Zaman, E. Miehling, and T. Başar, “Reinforcement learning
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