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H®*-Optimal Control for Singularly Perturbed
Systems—Part II: Imperfect
State Measurements

Zigang Pan, Student Member, IEEE, and Tamer Bagar, Fellow, IEEE

Abstract— In this paper we study the H°-optimal control
of singularly perturbed linear systems under general imperfect
measurements, for both finite- and infinite-horizon formulations.
Using a differential game theoretic approach, we first show that as
the singular perturbation parameter (say, ¢ > 0) approaches zero,
the optimal disturbance attenuation level for the full-order system
under a quadratic performance index converges to a value that
is bounded above by (and in some cases equal to) the maximum
of the optimal disturbance attenuation levels for the slow and fas¢
subsystems under appropriate “slow” and “fast” quadratic cost
functions, with the bound being computable independently of ¢
and knowing only the slow and fast dynamics of the system. We
then construct a controller based on the slow subsystem only and
obtain conditions under which it delivers a desired performance
level even though the fast dynamics are completely neglected. The
ultimate performance level achieved by this “slow” controller can
be uniformly improved upon, however, by a composite controller
that uses some feedback from the output of the fast subsystem. We
construct one such controller, via a two-step sequential procedure,
which uses static feedback from the fast output and dynamic
feedback from an appropriate slow output, each one obtained
by solving appropriate e-independent lower dimensional H -
optimal control problems under some informational constraints.
We provide a detailed analysis of the performance achieved by
this lower-dimensional ¢-independent composite controller when
applied to the full-order system and illustrate the theory with
some numerical results on some prototype systems.

I. INTRODUCTION

NE of the important developments in control theory has

been the recognition of the close relationship that exists
between H *°-optimal control problems (originally formulated
in the frequency domain [1], [2] and then extended to state-
space formulations [3]-[8]) and a class of linear-quadratic
differential games [9]—{13], which has not only led to simpier
derivations of existing results on the former, but also enabled
us to develop worst-case (H°°-optimal) controllers under
various information patterns, such as (in addition to perfect
and imperfect state measurements) delayed state and sampled
state measurements [14], [15]. An up-to-date coverage of
this relationship and the derivation of H°°-optimal controllers
under different information patterns can be found in the recent
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book [16], which also contains an extensive list of references
on the topic.

It is by now well known that in both finite- and infinite-
horizon formulations one can come arbitrarily close to the
H*-optimal performance level by designing a dynamic con-
troller, of the same order as that of the plant (which may
also include the dynamics of the disturbance, if any), whose
construction involves the solutions of two parameterized dif-
ferential or algebraic Riccati equations, subject to some spec-
tral radius condition. The problem we address in this paper is
the possible order reduction of this controller when the plant
exhibits open-loop time-scale separation. In the state space,
such systems are commonly modeled using the mathematical
framework of singular perturbations, with a small parameter,
say ¢, determining the degree of separation between the “slow”
and “fast” modes of the system [17]. In this framework, our
objective may be rephrased as one of obtaining “approximate”
controllers which do not depend on the singular perturbation
parameter ¢ and proving that these approximate controllers
can be used “reliably” on the original system when ¢ > 0 is
sufficiently small.

In Part I of this paper [18], we have already initiated a
study on this problem when the controller has access to full
state information, where we use the framework of differential
games. One of our results in this context has been that the H*°-
optimal performance does not show continuity at € = 0, in the
sense that the performance of the original system as ¢ — 0
is not necessarily the same as the H°°-optimal performance
of the reduced-order (slow) system, even if the fast subsystem
is stable. We have actually proven that the former is upper
bounded by the maximum of the H°-optimal performance of
the “slow” and “fast” subsystems, appropriately defined, and
that this bound is exact in the infinite-horizon case. We have
also constructed composite controllers (from parameterized
solutions of slow and fast games), independently of ¢, which
guarantee a desired achievable performance level for the full-
order plant when e is sufficiently small. .

In the present paper, we develop counterparts of these
results for the imperfect measurements case. Some of our
conclusions are similar in spirit to those of [18] (though details
of proofs are much more involved), while some others are
quite different. For a brief preview of our main results, let
us introduce the quantity vj(e) to denote the H°°-optimum
performance of the full-order system under imperfect state
measurements and the quantities v7, and 7yy to denote the
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H*-optimum performances of (appropriately defined) reduced
slow and fast subsystems, respectively. We first show that
77 (0) is bounded above by max{~s,,77s}. We then obtain
a composite controller, independent of the singular perturba-
tion parameter, under which the associated differential game
has a bounded upper value, and a desired achievable H*°-
performance bound is attained for the full-order problem. In
the perfect state measurements case, the construction of the
composite controller involved a parallel procedure, while here
it is sequential: Obtain first a static output feedback using the
fast dynamics and then a dynamic output feedback which uses
the dynamics of the “reduced” slow game.

The problem of designing controllers for singularly per-
turbed systems subject to unknown disturbances has been
studied before in the literature, notably in papers [19]-[21],
where the objective has been to obtain composite controllers
that guarantee stability of the overall (possibly nonlinear)
system. The main approach of the authors in these papers has
involved the construction of appropriate Lyapunov functions,
in terms of which a class of stabilizing controllers has been
characterized. No optimality properties, however, have been
associated with these controllers, which is our main concern
in this paper. Yet another paper that deals with uncertain
(linear) systems which exhibit time-scale separation is [22],
which obtains a two-frequency-scale decomposition for H>°-
disk problems, but does not address the issue of optimal
controller design.

The balance of the present paper is organized as follows. In
the next section, we formulate the singularly perturbed H°-
optimal control problem with imperfect state measurements
and identify the associated linear-quadratic differential game.
We also provide in that section the solution to the full-order
problem, for both finite and infinite horizons. In Section III,
we identify appropriate slow and fast subsystems and define
the associated differential games. The optimality of the slow
controller and its robustness to order reduction are studied
in Section IV. The main results are provided in Section V,
where we develop composite controllers for both the finite-
and infinite-horizon cases and obtain precise performance
bounds attained by these controllers. Section VI presents some
numerical results to illustrate the theory, and Section VII
provides a discussion on some immediate extensions. The
paper ends with five appendixes, which provide details of some
of the derivations given in the main body of the paper.

II. PROBLEM FORMULATION

The system under consideration, with slow and fast dy-
namics, is described in the standard “singularly perturbed”
form by

I = An(t)xl + Alz(t).'llz + By (t)'u, + D, (t)w
€z = A1(t)z1 + Az2(t)z2 + Ba(t)u + Do(t)w
y = C1(t)z1 + C2(t)z2 + E(t)w

2.0

where =’ := (z},z5) is the n-dimensional state vector, with
z; of dimension n; and z2 of dimension ny ;= n — ny; y
is the measured output; u is the control input, and w is the
disturbance, each belonging to appropriate (£2) Hilbert spaces
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‘Hz, Hy, H,, and H,,, respectively, defined on the time interval
[to,2s]. The initial condition for the system is

[1‘1 (t[])] =29

xz(to)

where z¢ is unknown. The control input u is generated by a
control policy pr, according to

u(t) = pr(t, Yo 1) (22)

where pr : [to,ty] x M, — M, is piecewise continuous
in ¢ and Lipschitz continuous in y, further satisfying the
given casualty condition. Let us denote the class of all these
controllers by M. With this system, we associate the standard
quadratic performance index

L(u, w,30) = fa(t))l3, + / (la(®) e + 20 () P@u)

+ [u(®)[pey) dt

where Q; will show dependence on ¢ > 0 (to be clarified

later) and
Q P
[P’ R 20.

Let us also introduce the notation J(ur,w,zo) to denote
L(u,w, o), with u given by (2.2). Given a Qo > 0, which
will show some dependence on ¢, the H-optimal control
problem is the minimization of the quality

sup  {[J(ur,w,za)]?/[llwl® + jmol3, 1%} (24)
wEHy; o€EH:
over all permissible controllers pj, or if a minimum does
not exist, the derivation of a controller uy that will assure
a performance within a given neighborhood of the infimum of
(2.4). Let us denote this infimum by ~7(e), ie.,

inf su J(pr1,w, 1/2 2 2 11/2y
. S C(CRED) vl g LN,

=7i(¢) 2.5)

where we explicitly show the dependence of 4} on the singular
perturbation parameter € > 0.

For each € > 0, we can associate a soft-constrained lin-
ear-quadratic differential game with this worst-case design
problem (see [16, ch. 5, sect. 1]), which has the cost function

Ly (u,w, @) = L(u,w, o) = V*{|[w]® + |zolf,}  (2.6)

6, 9

where “u” is the minimizer and “w, z¢” the maximizer. The
performance level v}(e) in (2.5) is then the “smallest” value
of v > 0 under which the differential game with state equation
(2.1) and cost function (2.6) has a bounded upper value, when
u is chosen according to (2.2).

Even though the problem formulated above has been solved
completely for every ¢ > 0 (see, e.g., {16, ch. 5]), the
computation of v} (¢) and the construction of a corresponding
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H*°-optimal or suboptimal controller for small values of ¢ > 0
present serious difficulties, due to numerical stiffness. To rem-
edy this, we pose in this paper the question of whether v} (e)
and the H*-optimal controller can be determined for small
value of € > 0 by solving well-behaved e-independent smaller-
order problems. Another question of interest is whether the fast
subsystem dynamics can be neglected completely in the design
of such controllers and, if so, under what conditions.

Before studying these questions, we first present the solution
to the full-order problem, under three basic assumptions:

Assumption 1: Qg,Qo, and Q(-) in (2.3) and (2.4) are
partitioned as

_1Qm Q2| . _ | Qo1 €Qorz | .
Q= Lszl 5Qf22] ’ Qo= LQom 6Q022] ’
_ [@u(t) Qu2(t)
Q) = |:Q21(t) sz(t)]

where in each case the 11-block is of dimension n; x n; and
the 22-block is of dimension ng X ng. Also, we partition the

matrix P in (2.3) as
&1
P=
[Pz]

in a way compatible with the partitioning of the Q’s.
Assumption 2: A;;(t), Pi(t), Qi;(t), Bi(t), Di(t), Ci(t),
E() ¢ = 1,2 j = 1,2) are continuously differentiable on
t € [to,tf].
Assumption 3: Matrix functions Ag(t), Q22(t), N(t), Do
(H)D5 (1)

[sz(t)

P(t) |, Da(t) Dy(t)
Py(t) 2 ], and [ 2

La(t) ]
R(t) L)

N(t)

are invertible for all ¢ € [to,ty], where N(t) := E(t)E'(t),
La(t) := Da(t)E(?).

Let us introduce the notation A(t) and A(t) to denote the
partitioned matrices

_ [Au@®) Awn®)],
A(t) = [A;(t) Ali(t)} ’

[ Au(®)  Awn®)
A(t) = [% :1121(t) 1 xilzzz(t)}

where we take ¢ > 0. Similarly, we introduce the partitioned

matrices
(2], - (2]
w=[rpl 0= |i50)

)

L By(t
C(t) == [Ci(t) Ca(t)]

Dy () :l
< Dy(t)

where Ly(t) := Di(¢)E'(¢).

Further, we define the following matrices:

A(t) = A(t) — BRI )P'(t);
AL(t) = Adt) = B()R™1(E)P'(2)

Q) = Q(t) - PR (H)P'(1);
B(t;v) = B)RM(H)B'(t) - %D(tw'(t)
1

Se(t;7) == Be(t)R™(t)Bi(t) - b D(t)D¢(t);

Riti) = CON 000 - 75 Q)

A(t) = A(t) - LO)NTI})C(t);

A(t) = A(t) - L () NT1()C(t)
M(t) := D(t)D'(t) — LN ()L (t) ;
M(t) := Dc(t)Di(t) — L()yN " ($)Le(t) -

We already know (see [16, ch. 5, theorem 5.3]) that for each
€ > 0, there exists a 4y > 0 such that for all v > 47 the
zero-sum differential game described by (2.1) and (2.6) has a
bounded upper value (which in this case is equal to zero) and
a controller that delivers the upper value is

wj(t) = uj(t Ypo,q) = —RUBLZ(t;€) + P)i(t),

t>1o. 2.7

Here, (t) is the “observer state,” generated by the differential
equation
b= (A -S.2)+ (- % £2)1(5C + LN
1 -
- (y-Cz - o L.Zz);  &(t) =0. (2.8)
The matrix Z(t; ) is the unique bounded nonnegative definite
solution of the backward matrix Riccati differential equation
Z+AZ+7A.-25.2+0=0; Z(t;) = Qs 2.9
and %(t; €) is the unique bounded positive definite solution of
the forward matrix Riccati differential equation
S =AS+5A -SRE+M.;  E(t)=Q;'. 2.10)

For v < 4, either I — (1 /7?)EZ has at least one negative
eigenvalue or one of the two Riccati equations above has
a conjugate point in the open interval (o,ts), leading in
each case to the conclusion that the soft-constrained game
has an unbounded upper value. The level 4 is indeed the
H®°-optimal performance level defined by (2.5).

The Riccati equation (2.9) also arises in the problem with
perfect state measurements, which has been studied exten-
sively in Part I of this paper [18]. It has been shown there
that Z admits the partitioning
7= [2}1

21
=\ } @.11)

6222
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where Zn, Zlg and Zzg, satisfy the following matrix differ-
ential equations:

Zn+ z;1211 + ZZCIZ{Z + Z1An + Z1pAn +
Qi1 — 21181121 — Z1280 711 — 21151221,
~Z13893221, =0; Z11(ty) = Q1 (212)

6212 + 62111212 + :4_;1222 + 211212 + 212222 + alg
—€Z211811212 — €Z£12801 212 — 211512227
~Z12822200=0;  Z1a(ts) = Q12 (2.13)

€222 + 62{2212 + 22,2222 + 62{2212 + 222222 + 622
~221,811212 — €223831 712 — €21,5122;
—Z2282222 =0 Zypa(ty) = Qpa2. (2.14)

By a standard duality argument it follows that 3 admits the
partitioning
£i= [2}1 1)3)3:2 ] 2.15)
12 ¢ &2

where £11, 12, and £g9 satisfy the following matrix differ-
ential equations:

£ = ApSi+ 1‘11253'12 +31dn + 21'~»x‘i'12 + My,
- X1 Rn¥y — 12R1X11-E11 Rip¥,

- ilzézziiz; iu(to) = Qalll + 0(6) (216)

12 = €A1 S1p + A1pE0s + ﬁ111‘1'21 +E124h,
+ Mm - Ef}llknilz - 62123215312
- 23111{212222 - 212R22222;

~ Q511 Qu12Q53; + O(e)

L1a(te) = .17

Ci:gz = Ex‘izlilz + t‘inizz + 62'1214121 + 222.&’22 + Mgz
- EE,R1 1 — SRy — B4, R1550,
— SRSr;  En(te) = Qo + O(e).
(2.18)

Of course, the preceding analysis is valid for all v larger
than sup{77(€),0 < ¢ < €}, where ¢ is some prechosen
small (positive) scalar.

For the infinite-horizon case (i.e., as ty — oo and to —
—o0, as well as when ¢ty = oo and t;p = —oc), we take A,
B,D,C,E,P,Q, and R to be time-invariant, @; = 0 and
Qo = oo, and require that z(t) — 0 as ¢ — —oo and
t — oo. Furthermore, we assume that (A, B.) and (A, D)
are controllable, and (A.,Q) and (A.,C) are observable.
Then, for each ¢ > 0, there exists a 41, such that, for all
Y > I, the infinite-horizon soft-constrained game has a
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finite upper value, achieved by the controller

—R7YB.Z(e) + P)i(t)
(2.19)

uf(t) = oo (b Y(—oo)) =

where i(t) is generated by the following differential equation:
. . 1 _\!
Z=(Ac— SeZoo)i + ( - ? Zoo)
(ZeC' + LN (y Cz——L'Z ”);
(2.20)

#(-00) =

The matrix Zo(e) is the minimal positive definite solution of
the generalized algebraic Riccati equation (GARE)

Ao+ Zoohe = 200820 +Q =0 (2.21)

and £, () is the minimal positive definite solution of the
dual GARE

AL + LooAl - SRS + M. = 0. (2.22)

The level 47 is again the H°°-optimal performance level of
the infinite-horizon disturbance attenuation problem, and for
¥ < YIoo» the soft-constrained game has infinite upper value.

The GARE (2.21) has also been studied extensively in [18],
where we have shown that the solution Z,, admits a partition-
ing that is identical with (2.11). Substituting this structure into
the GARE leads to the following coupled algebraic Riccati
equations for Zoou Zmlz , and Zooos:

Z1I1Z~cx=11 + Zélzfmz + Zoon1A11 + Zoo12421 + Qun
= Zoo11811Z0011 = Zo012821 2011
= Zoo1181220015 — Zo125222015 = 0
(2.23)

621120012 + Z‘;lzoo22 + Zoor1A12 + Zoo12Ans + [
~ € Z0o11511 20012 — €Z0012521 Zoo12
= 2501151220022 — Zo012822 20022 =0

(2.24)

621,220012 + Z;zzoo22 + 62&,12212 + Zoozzzn + @zz
-é Zéolzgllzcol‘z - 62w22§212m12
~ €2519812Z 0022 — Z022822 %0022 = 0.
(2.25)

As in the finite-horizon case, by duality arguments, we now
substitute the structure (2.15) into (2.22), to arrive at the fol-
lowing coupled algebraic Riccati equations for Eoon, Soo12s
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and 20022.

A1 Too11 + A12Zl15 + Boo114]) + See12dl, + My
— S R11Zen1 — Br2Baoont
— Soo11R128 15 — Soo12Ra2El01 = 0
(2.26)

€A1 S0z + A12S0022 + SoollAlzl + ioolzx‘i'zz + Mis
- eiwllRlli:oolZ - 5>~:oo12R2120012
— Beo11R1280022 — Eoo12R225 0022 = 0
2.27)

€A D12 + ApaSocar + €519 Al + Soo2aAhy + Moo
- 622;121?1120012 - 620022}}2120012
— €2 1aR1250022 — Zoc22R228 0022 = 0.
(2.28)

Thus completing the analysis of the direct solution to the
full-order problem as ¢ — 0, we now turn, in the next two
sections, to the original goal of this paper—which is the
derivation of the approximate solution based on a time-scale
decomposition. First we identify, in Section IIl, the slow
and fast subsystems associated with the original problem
and obtain the solutions of two separate H°-optimal control
problems, one defined on the slow time scale and the other
one on the fast time scale.

III. A TIME-SCALE DECOMPOSITION

The Slow Subsystem and the Associated Soft-Constrained
Game

To obtain the slow dynamics associated with (2.1), we let
e = 0 and solve for zo (to be denoted Z») in terms of
T1 =: Ts, U =: Us, W =: Ws, Y =: Ys, and under the working
Assumption 3:
Ty = — Az (Anizs + Bau, + Daw,). 3.
Using this in the remaining equations of (2.1), we obtain the
reduced-order (slow) dynamics

{ is = Ao.’L‘s + BOUg + Do'ws (3 2)

Ys = Cozs — C2A2—2132us + Fows,
where
Ag = A — AzAzy Agrs By := By — A13A5, Ba;
Do := Dy - A12A2AZID2; Co:=C1— 02A2_21A21 ;
Ey:=E - CyA3;' D,.
Using (3.1) also in the cost function (2.3) leads to the reduced

(slow) cost (where we have also set ¢ = 0)

ty
L= lou(t )y, + [ (el +204Qums
to

+ [Zalf,, + 20, Prus + 275 Poug + |uaf3) dt . (3.3)

The zero-sum differential game associated with this problem
has the cost function

2 2
Lys = Ly =7 (llwal + 124 (t0) G, )

and we are in fact interested only in the upper value of this
game.

As in the perfect state information case covered in [18],
under the condition

"/2I - D/2AI2§1Q22A2_21D2 >0

(34

3.5)

we introduce the transformation given below to cancel out the
cross terms in z,, ug, and ws:

w, =(+v2I — Dy Aty QuaAz Do) *lw,+
- — -1 - hy
(v’ - DyA%,' Q22 A3, D2) DyAy,'QuAz;
((A22Q35 Qo1 — Az)zs + (A22Q3; P2 — Ba)u,)].
(3.6)

Note that the dependence of W, on u, is allowed here since
we are interested in the upper value of the game. Using this
transformation in (3.2) and (3.4), we arrive at the following
LQ structure:

Ty = ADl‘s + BDus + DD'UA)s 3 xs(to) =T10
§s := ys + GPu, = CPz, + EPw,
2 2
Lo = |2(t5)lg,,, = 7'10s(t0)|gy,,
ty QD PD T 2
/ ! EN
+ /to ([.Ts Ug ][PD/ RD] [us] stl )dt (3.9)

where

- _ 1
AP(y) = Ay — A12Q5, Qn — (A12Q221 %9 — o DlD’2>

3.7
(3.8)

-1
_ 1
: (A22Q221A'22 ~ D2D'2)

(A1 — A22Q55 Q1) (3.10)
1
BU(7) := By — A12Q5 P + (A12Q2‘2‘A’22 -3 D1D’2)

-1
_ 1
: (A22Q221A’22 3 DZDQ)

- (A22Q3' P2 — By) @3.11)
DY(y) := Do(v*] — DyAlZ Qe Azt Dy) ™2 (3.12)
G(v) = Q5 Py — (CzQ;;A’n - %LQ)
1 -1
: (AzzQEzl 22 — po D2D'2>
- (A22Q3 P2 — Bo) G.13)

_ 1
CY(7) = C1 - C2Q3 Q21 — (02%1 2= L’z)

1 -1
. (A22Q521A§2 3 D2D§>

- (A2 — A2Q% Q) (3.14)
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- - -1/2
ET(y) = Eo(v2I — DyAl QuAziDy) Y2 (3.15)
Q"() == Qu1 — Q12Q5 Qn + (A% ~ Q12Q5; A3,)
1 -1
. (AzzQz_zlAlzz R D2D;>

- (421 — A2Q3,7Qx) (3.16)

PP(7) := P — Q12Q5; Py — (A%; — Q12Q55 A%y)

_ 1 -
: <A22Q221 izz - ? D2D;>

- (A22Q5, P> — Bs) 3.17)
RO(y):=R- PyQy P + (PyQyy Aby — BY)
1 A7t
. (A22Q521A’22 Rz D2D2)
- (A22Q3 P, — By). (3.18)

Detailed derivations of the above can be found in [23]; see
also Appendix B for an outline of the derivation.

We can also compute (see Appendix B and [23] for detailed
derivations)

[P := DPEY
1 - _ 1
= ? Ll - A12Q22105 + (A12Q221 ,22 - ? DlDé)

_ 1 -
. (A22Q221Alzz - jy‘g' DlD’z)

L1
. (AzzQ;}Cz ~ Lz) (3.19)

NI:I = EDEEII
1 _ _ 1
L v- st (oitsa- 4 )

_ 1 !
: (A22Q221A'22 7 D2D§)

. ( A2Q52Ch — -7}5 Lz) . (3.20)

The system described by (3.7)-(3.9) is now a standard LQ
differential game, but under imperfect state measurements,
where the slow control u, at time ¢ can use only the mea-
surements {f,(7), 7 < t}. For this system, there will exist a
“minimal” vy > 0, such that V v > 4y, the following three
conditions are satisfied! (see [16, ch. 5, p. 146]).

Condition 1: The following GRDE admits a bounded non-
negative definite solution Z,.,

Zo+AYZ,+ 22 - 25,2, +0" =0,

Z(tg) = Qs (321

where
A7 =A° - BOR-'PY; Q=Y pUgt-ipy
Sy = BYR?-'BY — pUpY.

Note that under condition (3.5), Q0(~) > 0.
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Condition 2: The following GRDE admits a bounded pos-
itive definite solution ¥}

$, = A95, + £, A — 125, RoS. + %m;

E,(to) = %Q;ﬁ (3.22)

where

AP .= A°_[PNT-1c0, 72Rg := CYNO-10P _ O
71—21\"45 ;= DIDY — [BND-1 LY

An equivalent condition can be obtained in terms of X, :=

42%%, where the counterpart of (3.22) is
257 = ADZa‘y + Es'yADI - zs'yROZs'y + MD;

Toy(to) = Qor - (3.23)
Condition 3: The spectral radius condition
1 -
=T = Zey > 0. (3.24)

e
Under these three conditions, the “slow” differential game has
a bounded upper value. For 4y < ~y, on the other hand, at
least one of the Conditions 1-3 is violated and the game has
unbounded upper value.

After some detailed manipulations (see Appendix B,
asDwell a[sj [23]), we arrive at the following forms for
Z ,go,a ,AD,RO and MD.

-0  — - =11 = — =1
A" =41 - A412Q5 Qn — (S12+A12Q5; Ayy)
— — =1t 1~ _ =1 —
- (S22 + A22Qy; Agy) " (An — A22Qsy A22Qs1)
(3.25)
—=0 - -_ =1l -7 _— =1
Q =Qn — Q12Q2 Qa1 + (A3 — Q2@ Az)
— — == —leeys 1, _ =1
© (Saz+ A22Q35 Azp) ' (An1 — AnaQyy Qo)
(3.26)

So=8u+ Klz@?ﬁ{z - (S + Z12@2_212122)
— — __1_ _- — — — e ] —
- (S22 + A22Qyp Agy) '(San + AzzszlAiz)
3.27)

AP = Ayy — MM, Ay — (Arg — My M5 Ayy)
. (R22 + A122M231A22)_1(R21 + A122M2_21A21)
(3.28)

Ry = Ry + Ay Mz, Ayy — (Rag + Ay M,  Agy)
- (Roa + x‘iégM{glz‘izz')-l(Rz] + 1‘1321\;12_211421)
3.29)
MP = My ~ M12M2}1M21 + (1‘112 - M12M2_214‘i22)
- (Raz + Apy My Agy) ™M (Al — Ay My, M) .
(3.30)
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In view of this, let us introduce the set

I, :={v >0: ¥y >+,(3.5) holds and Conditions

1-3 are satisfied} .
Let us further define
41s := inf{y € T'1,} . (3.31)

Then, the transformed game with cost function L., has a
bounded upper value if v > 4r,, and only if v > 4;,. For
~ > 415, the control policy that delivers the upper value is

U}, = i3s(t Gojte,g)) = —ROH(BY Z,y + PP)i4(t) (3.32)

where £, is generated by the following differential equation:
. . " 1 -
i, = A9Z, + BDU}S + D%, + (I - :)3 Es'st'v)

1 —1/~ 2 .
. (? E,‘.,CD' + LD)ND l(ya —¥s)s Z4(to) =0

(3.33)
We = DY Zyy s (3.34)
%, = C9%, + E°u, (3.35)

Substituting (3.34), (3.35), and (3.8) into (3.33), after detailed
derivations (see Appendix B and [23] for details), we arrive at

ul,(t, y[to,t]) = “R_I(Bllza'y + P - le.U—‘*' BéV)ﬁ,(t)
(3.36)
5 -0 = N 1 -1
b0 =(A" = BoZu)s + (I = = TerZun
(ByCi 4+ Ly~ U'Ly+ VCHN?

1 - 1 _,=
. (y— (C]'l'?L; —02U+?L’2V>:i,);

Z4(to) = 0 (337
where
g = le,.y + gz (3.38)
Vi=ViZsy + Vo (3.39)
U= 015, + U (3.40)
V=S + Vs (3.41)
— ——l—t —=—l—t = — —=—l=
Uy = Qg Ajp — Qap Aga(S22 + A22Q52 Ape)
- (a1 + A22Q 3 A1y) (3.42)
= —=—-1= =-1—=! = - =-1=/ .3
Uz := Qyp Q2 + Qap Apy(S22 + A22Q9; Ay;)
- (Az - A2:Q5 Q1) (3.43)

Vi= —(§22+22262_212;2)_1(§21 +X22§2_212{2) (3.44)
Va2 i= (Sa2 + A20Q Ay) ™ (Az1 — AnoQp Q1) (3.45)

01 = M{glfim - M{;z&zz(ﬁzz + A§2M2—21/i22)_1

- (R + A M3t Agy) (3.46)

Us := M2—21M21 + M2_21A22(R22 + A’22M2_21A22)_1
- (Alp = App My M) (347)

Vi i= —(Rag + AhpMyy! Agy) ™Y (Rar + Ay My, A1)
(3.48)

Vs := (Ray + App Mgy Aga) 7} (Al — App M3y M) .
(3.49)
From (3.25)-(3.30), (3.36), and (3.37), we see that the
coefficients of the Riccati differential equations (3.21) and
(3.22), as well as the p},(t,y[,,s)> do not actually depend
on the validity of condition (3.5). This resembles the situation
encountered in [18], where we had actually eliminated that
condition by introducing a disturbance feedforward into the
slow subsystem, which was then realizable using the fast
states. Here, however, this does not seem to be possible since
the measurements are noisy. Still, motivated by the solution
of the full-information problem in [18], we introduce the set

Tro:={7>0: Vy>v,52 +AnQy Ay >0,
Rag + Aby M5 Agy > 0,(3.21) has a bounded
nonnegative definite solution over [to, t¢],

{3.22) has a bounded positive definite solution
over [to,ts], and ¥’} — Z,, > 0} (3.50)

and further define

A1s := inf{y € T1,} (3.51)

which constitutes a lower bound on the ultimate performance
of the full-order system. We will see in the following section
that v7, will indeed play a key role in the solution of the
original problem.

The Fast Subsystem and the Associated Soft-Constrained Game

Letzy := To—To,uf 1= U—Us, Wf i= W—Ws, Yf ‘= Y—VYs
and 7 =t/ — t/e, where we take ¢ to be frozen and let t’ vary
on the same time scale as ¢. We define the fast subsystem and

the associated cost (as in the standard regulator problem: see
[24]) by

di'r % = Ag(t)zh + Ba(t)u} + Do (t)w (3.52)
y% = Coz’s + Ew} (3.53)

Ly = [ bl + 225 Pa(005 + I
— 72 |wh|?) dr. (3.54)

The GARE’s associated with this infinite-horizon game, for
each t, are
Ap()Z + ZAns(t) + Qua(t) — Z7522(8)Z5 =0 (3.55)
Azz(t)zf + Eanz(t) + MQQ - Efﬁzz(t)xf =0. (3.56)

We now let v}, denote the minimax disturbance attenua-
tion bound for the H>-optimal control problem defined by
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(3.52)-(3.54) under imperfect state information,> and ~! 7
denote the same under open-loop information.> For every
Y > iy let Zg,(t) be the minimal positive definite solution
for (3.55) (and, for every v > 7%, let Z,5.,(t) be the solution
to the open-loop version of (3.55), with Ba(t) = 0) and X4, (t)
be the minimal positive definite solution of (3.56).

We now define

Yof = Sup 'yf,f.

VIf = SUp Vg
t€(to,ty]

t€[to,ty]
Then, for every v > 714, the GARE’s (3.55) and (3.56) admit
positive definite solutions for all ¢ € [ty,¢y]. Let

Fy = max{yrf,Vre} - 3.57)

We will shortly see that this value also plays an important
role in the characterization of a reduced-order solution for our
problem.

The Infinite-Horizon Case

We now tumn to the infinite-horizon case. Let
A,B,D,C,E,P,R, and @) be time invariant, Q; be
zero, and ty = —o0,ty = co. By following steps similar to
those in the finite-horizon case, we first decompose the system
into slow and fast subsystems. The slow game is described by

&, = APz, + BOu, + D9, (3.58)
s = y + GPu, = C%%, + EP, (3.59)
oo m] PEI Zs 2
o= [~ (10wl Fo] 2] - tou) a
(3.60)

where AY, BU, DU, GP, CP, EP, QU, PU, and R" are as de-
fined before, with the only difference being that they are now
time-invariant. Similarly we can define L& and NU as in (3.19)
and (3.20), but now time-invariant.
The associated GARE'’s are
ZD,Z.';oo + Zsoozl:' - Zsoogﬂzaoo +GD =0 (3.61)
i .. . . - 1 -
ADano + ZsooAD/ - ’Y?zjsooRﬂzsoo + ”7—2" MP=0 (3.62)
where ZD,E),QD, AP, Ry, and MPD are defined as before.
Let us now introduce the following set (as the counterpart
of the one in the finite-horizon case).
{¥>0: Vv2>+',(3.5) holds, (3.61) hasa

.. - . . -0 =
minimal positive definite solution Z,,, A~ — Sp

FIsoc =

Z4y is Hurwitz, (3.62) has a minimal positive
1 N N
definite solution, written as — X, ,AY — Ro%,,
Y

is Hurwitz, and v*2,) — Z,, > 0} (3.63)

2To ensure that 'y} < oo, it will be sufficient to take the pair
(A22(t), B2(t)) to be controllable, and the pair (A22(t), C2(t)) to be
observable.

3To ensure that 7 5 < o0, it will be sufficient to take A22(t) to be Hurwitz,
for every fixed ¢.

287

and define*

Als00 := illf{')’ € I‘Im}. (3.64)
For every v > 41500, let Z, be the minimal positive definite
solution to (3.61), and f);w, which is to be denoted by
(1/4?) 25y, be the minimal positive definite solution to (3.62).
Then, for each v > 47,0, the control that attains the optimal
upper value is the same as in (3.32)—(3.35), which can further
be simplified to (3.36)—(3.37). By an argument similar to that
used in the finite-horizon case, we introduce

T oo i= {¥>0: Vy>+',8s +222§£IX;2 >0,
Roo + Ay M3  Agy > 0,(3.61) has a minimal
positive definite solution Zs7,ZD - 502,y
is Hurwitz, (3.62) has a minimal positive de-

. . i 1 . .
finite solution, written as pos Loy, AY — RoZ,,

is Hurwitz, and v*2, — Z,, > 0} (3.65)

and define

Viaoo := inf{y € a0} . (3.66)
The fast part of the system is the same as in the finite-
horizon case, where the coefficient matrices are now constants.
The fast game is described by (3.52)—(3.54), and the GARE’s
are the same as (3.55)—(3.56). We will use 75 to denote the
minimax disturbance attenuation bound under imperfect state
information pattern (and 7,5, for the open-loop case), let
Z 5~ denote the minimal positive solution to (3.55) (and Z,.,
for the open-loop case) and 2., denote the minimal positive
solution to (3.56). As the counterpart of (3.35), we define
7100 = ma‘x{'n_fooy'ylsoo} . (3.67)
This quantity will also play an important role in our analysis
in the next section.

IV. OPTIMALITY OF THE SLOW CONTROLLER

We study in this section optimality properties of the slow
controller introduced in Section III, when used in the full-order
system, for both finite- and infinite-horizon cases.

The Infinite-Horizon Case

To make the 7, defined by (3.67) remain finite, we make
two additional assumptions:

Assumption 4: The pairs (Xn - 21222_21221,@—11 - 612
Qs Qa1), (A22C3) and (Ao, Cy) are observable.

Assumption 5: The pairs (Ag,Bo), (A1 — /ilzfi;zl
Agl, Mn - MlgMz_lezl) and (Azz, Bz) are controllable.

Then we have the following theorem:

*Again, for 470 1o be finite, it will be sufficient to have the pair (AT, BO)
controllable and the pair (A7, CT) observable at ¥ = oo, which is equivalent
to having the pair (Ao, Bo) controllable and the pair (Aq, Cp) observable.
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Theorem 1: Consider the singularly perturbed system
(2.1)-(2.6), with ¢ty = 00,tp = —00,Qs = 0,Qp = 00 and
A,B,D,C,E, P, R, Q time-variant. If assumptions 1-5 hold,
then

1) lirg+ 77 (€) = F1o0» Where ¥, as defined in (3.67), is
finite.

2) VY > Vo3 €y > 0 such that V e € [0,¢,), the GARE
(2.21) admits a positive definite solution, where the minimal
such solution can be approximated by

Z(e) =
Zey + O(e).

(25,0 +7) +0()
(25,0 +7) +0(&)

eZpy + 0(62) @

Similarly, the GARE (2.22) admits a positive definite so-
lution, where the minimal such solution can be approxi-
mated by

(e) =
£, +0(6)
YU+ V 4+ 0(e)

(BpyU + V) +0(e)

L t06) |- *?

Furthermore, (1/9%)£~1(¢) — Z(e) > 0. Consequently, the
game has a finite upper value.

33 Vy> ma‘x{’YIsooy'Yofoo} = max{'?]soo:')’ofoo}, if we
apply to the system the “slow” controller u}, defined by
(3.36)-(3.37), then 3 e’., > 0 such that, V € € [0, efy), the
disturbance attenuation level v is attained for the full-order
system. .

Proof: We first note that under Assumptions 1-5, both
slow and fast games admit saddle-point solutions for suffi-
ciently large values of -, since at v = oo both problems
become “regular” LQR problems admitting stabilizing optimal
controllers. This shows that both Y7, and <y7¢o are finite,
implying that 7., is also finite. Fix v > 7. By an
argument similar to that used in the proof of Theorem 1 of [18]
and duality, we conclude that the pair (A, Q) is observable
and the pair (A, D) is controllable. We know that GARE
(3.61) admits a minimal positive definite solution Z,, and
the GARE (3.55) (with time-invariant coefficients) admits a
minimal positive definite solution Z;.,. By the definition of

YIsoos a° -§0Z,7 is Hurwitz. It is well-known that, for
¥ > YIfoos A2z — 8222 ., is Hurwitz. Thus, we can conclude,
by applying the method of proof of Theorem 1 in [18], that
GARE (2.21) admits a positive definite solution for sufficiently
small positive ¢, which can further be approximated by (4.1).

On the other hand, GARE (3.62) admits a minimal positive
definite solution (1/42)E,., with AY — RyX,. Hurwitz, and
furthermore GARE (3.56) (with time-invariant coefficients)
admits a minimal positive solution ¥¢,, with Aby — Ryp® fvy
Hurwitz. Thus, by applying the method of proof of Theorem 1
in [18], (2.26)—(2.28) admit a solution and hence GARE (2.22)
admits a solution, which can further be approximated by (4.2).
Then if follows that, for sufficiently small positive ¢, the
solution in (4.2) is positive definite.

Now, we can easily evaluate

I- l? £Z =
v
I- ,Y% Yoy Zsy + O(e) O(e)
* I-%5%4Z,+0(e)

where * stands for any constant terms of O(1). This shows
that for e sufficiently small, the matrix I — (1/7%)2Z can
have only positive eigenvalues. Thus, 1) is proved.

To prove part 1), note that Vy < 77, either at least one
of the GARE’s (3.61), (3.55), (3.62), and (3.56) does not
admit any positive definite solution, or one of the matrices
VL7 — Zey and 722;; — Zgyhas at least one negative
eigenvalue. The former implies that one of the GARE'’s (2.21)
and (2.22) does not admit any positive definite solution for
sufficiently small ¢, by the result of [18], which further implies
that v < 77(€).The latter implies that the matrix I — ;I;ZZ
has at least one negative eigenvalue for sufficiently small e,
which again implies that v < ~}(€). Hence, v < vj(e) for
sufficiently small €, Vy < F;,. Thus, 1) is proved.

For 3), we first note that for v > 7,7, condition (3.5)
holds. Thus we can write the closed-loop system, using the
parameter matrices of the slow subsystem, as

%1 z1
s | =F°|%, | + D°w 4.3)
63'72 I2
where
Fe .= Flel Fle2 . Fe .= Fleln F1e211
Fn Fnl’ n R Py
Fi':=Aun;  Fg':=-BR%(BYZ,, +PY)

-1
1
F§it = (1 - % zwz”> (? T CY + LD) NE-Ic,

— 0 —= 1 -1
Fgl =4 = 50Zyy — (1 - 2,7287)
. (% %,,CY + LD> NO-1
. (GDRD_I(BD'ZS7+PD') +CD+LD'ZS-Y)
-
12 -—

A
|:(I -4 z,yz,q) - (;1,1;,705' + LE’)ND-IC2

Fy = [Aglé - BR%Y(BYZ,, + PD’)] ;

F2E2 = A22 ; D; = Dz
Dy
De f ; :el: - (I ;;17 Z-"YZS’Y)
D
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where we have used the slow controller in the form of
(3.32)-(3.35) and replaced 3, by its expression given by (3.8).
We can also rewrite the cost function as

2
oo x1
J= / I,
e T2 Qe
where

1 11 11
Qe — Qil Q'i’z . Qil — Q({'h i%l .
= = H
Q5 Q5] Q5 Q5

fil =Qn

— 2 lw|? } dt (4.4)

ell .__ ells

2= “PIRD—l(BD’Zw + PD’) ; 21 = W12

Qg%l e (Zs—yBD + PD)RD—lRRD_l(BDIZ,.Y +PDI)

[ —
12 - —

_ O Q12D O-1pr |3 Q31 = Q%;
(Z,,A,B + P )R P
Q5 = Q2.

This is an infinite-horizon, one-person maximization problem,
with the initial state at ¢ = —oo being 0. It has a finite
maximum (which will be zero since the initial state is zero) if
the following ARE admits a positive definite solution:

.- -1 -
FYZ+E2Ff + E? DD{E+Q° =0 4.5)
where
e FE De
Ff .= 1 12 ] ; D¢ = [ ! ] .
[% Fy L F5 + Ds

We now first decompose (4.5) into slow and fast parts,
each of which is an ARE independent of ¢ > 0. Then we
observe that the solution to the fast ARE is Z.s,, and that
(see Appendix C) a solution to the slow ARE is

[ Iy - (’722;71 - Zw)] =5 4.6)
—(PEG = 2e)  VEG -Ze [T
which is clearly positive definite, since '722;11 —Z4y > 0 from
the definition of f‘;,m. Then, there exists a minimal positive
definite solution =, to the slow ARE.

Now using an analysis similar to that used in the proof of
Theorem 1 of Part I (which involved the use of the implicit
function theorem) we can show that existence of positive
definite solutions to the slow and fast parts of (4.5) implies
existence of a positive definite solution to the full-order
equation (4.5) for sufficiently small ¢ > 0. This completes
the proof of part 3) of the theorem. a
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The Finite-Horizon Case

Theorem 2: For the singularly perturbed system
(2.1)-(2.6), let Assumptions 1-3 be satisfied, the pair
(A22(t), B2(t)) be controllable, the pair (Aaz(t), C2(t)) be
observable for each t € {to,%s], and the following conditions
hold:

Q22 < Zg(ty), where Zg,(ts) is the solution to (3.55)
at t = t; with ~y fixed.

Qoz2 > Z7;(to), where T, (to) is the solution to (3.56)
at t = to with v fixed.

Then,

1) v7(€) £ 7, asymptotically as ¢ — 0, where 7, as defined
in (3.57), is finite.

)V vy > %,3 ¢4 > 0such that V e € [0,¢,), the
GRDE (2.9) admits a nonnegative definite solution, which can
be approximated by (4.7), given below, for all ¢ € [to,%¢],
where Z.,(7) and Z.4(7) are boundary layer correction terms
att =1y, and as 7 — —oo they converge to 0 exponentially
in the 7 time scale. Also the GRDE (2.10) admits a positive
definite solution, which can be approximated by (4.8) given
below, for all ¢ € [to,ts], where () and Zgp(7) are
boundary layer correction terms at ¢ = #g, and as T — o©
they converge to 0 exponentially in the 7 time scale.

Furthermore, (1/72)X~1 - Z > 0. Consequently, the game
(2.1)-(2.6) has a finite value.

3) With v fixed, let ¥2Qo22 > Zos+(to). If furthermore
7 > max{vre,Yor} = max{¥1s,707}, and we apply to the
system the “slow” controller y}, defined by (3.36)-(3.37),
then 3 €, > 0 such that, V ¢ € [0,€), the disturbance
attenuation level +y is attained for the full-order system

Proof: By a reasoning similar to that used in Theorem 1,
we can apply Theorem 2 (and its method of proof) in [18]
to verify (4.7) and (4.8). Hence, we only need to show
the validity of the spectral radius condition for the full-
order system to prove 1) and 2). We can simply evaluate
I- (1/72)22 as in (o), found on the bottom of the next
page, where * stands for any constant term of O(1). Since v >
Vs, — (1/4%)E4y(t)Zs(t) has only positive eigenvalues.
Furthermore, since v > ~r5, I — (1/7%)Z4,(t)Zs+(t) has
only positive eigenvalues. For the boundary layer terms, we
first consider ¢ ~ t;. By choosing ¢ sufficiently small, X ¢, (1)
can be made arbitrary small. We can see from the differential
equation for Zy,(7) (see (2.21) and (2.23) in [18]) that
Zf.,(t_f) + Zfb(T) < Zf.,(t_f) < 722f,7(tf) V 7. Thus, we
can conclude that, for € sufficiently small, the 22-block of the
matrix (0) can be made to have only positive eigenvalues at
t ~ ty, due to the continuity of Zy.,(t). The same holds for

7= [ _ Ze+0() €(Z3,T + 7V + Zap(7)) +O(e2) ] @)
e(ZfA,U +V + Zcb(T)) + 0(62) e(Zgy+ Zpp(7)) + 0(62) ’
- _ Zey+0(e) (5,0 +V + Za(1)) + O(€)
Z—EMU+V+ZMﬂ+O@ g@ﬁ+2Mﬂ+0@)] @9
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t = to. For t € (to, ), choose e sufficiently small to make the
two-boundary-layer terms arbitrary small. Then, by choosing
e sufficiently small, the 22-block of the above matrix can be
made to have only positive eigenvalues V ¢ € [tp,ts]. Thus,
we have established 1) and 2).

For 3), we follow a reasoning similar to that used in the
proof of Theorem 1. First we rewrite the system equation as
in (4.3) and the cost function in a form similar to (4.4):

2 !

ts 1 Iy
J :/ Zs —?wl? }dt + |2,
to T2 Qe T2
Q1 0 Qg2 | (1 1]’
0 0 0 Ze 2|,
@iz 0 €Qraa| |x2 | le=t; Ty
Qouin 0 eQoiz | |71
0 ml 0 I
€Qoiz 0 €Qozz | [z2] lt=to
—len2 2 2
=|z°llge + |xe(tf)|Q; - ’Yzlme(to)bg 4.9

where m is any sufficiently large positive number (we can do
this since £4(to) = 0), and the coefficient matrices F*¢ and Q°
are defined as before. Let = be the bounded positive definite
solution to the following RDE (the existence of = will be
verified shortly)

) =& =1 =
E+F'E+ZF + :.? D¢DEZE + Q° = 0;

E(ty)=QF  te€ltots]. (4.10)

Then, the maximal cost can be bounded by

2
T < (o) qp 420 -

Let us assume for the moment that the RDE (4.10) admits a
decomposition with well-defined slow and fast parts. Then, its
solution can be approximated by

_ [éw(t) + O(e)
O(e)

O(e)
(Zog+(t) +Epp(7) + O(e)

(1

)] 4.11)

where =, is the solution to the slow sub-RDE, and = () is
the boundary layer term at ¢ = t;. Now, since Z,, defined
in (4.6) is also a solution to the same RDE as =,, (see
Appendix C), and

Esq(ts) > [Qéu g]

it follows that ésﬂ,(t) exists and =, (to) > ésy(tg), which in
turn guarantees the existence of Z by using the generalized
implicit function theorem given in [25, theorem L]. Since
Loy (to) = Qpry» we have that —y2Q§ + =(to) < 0 for small
enough e and large enough m. This then establishes 3). O

V. A SEQUENTIAL DESIGN OF THE COMPOSITE CONTROLLER

We see from the analysis of the previous section that for
the finite-horizon case a “slow” controller can achieve a
performance level v > max{~yrs,7,5} (but not necessarily
max{yrs,¥1f} < v < max{vrs,Yys}). We may find in
many situations that the fast subsystem is more sensitive to
noise, which means that v,y > 75 and v,5 > ~15. In such
situations, it may be possible to obtain significantly better per-
formance by designing a composite controller. Toward a study
of this possibility, we first make the following simplifying
assumption.’

Assumption 6: R =1,L =0, and P = 0.

Note that this means that the cost function has no cross
terms between the state and the control, has unity weight-
ing on control, and the system and measurement noises are
independent.

We will discuss the design of the composite controlier first
for the finite-horizon case.

Fast Subsystem Revisited

For the fast subsystem described by (3.52)-(3.53), we
cannot design a dynamic output feedback controller since it
is not a feasible design when the true value of ¢ is not known.
This then leaves, as the only possibility, the use of static output
feedback controllers.

First we state a lemma regarding the static output feedback
control design for a general system, for which a proof can be
found in Appendix D.

Lemma 1: Consider the system

&= Az + Bu+ Dw 5.1)
and the measurement equation
y=Cz+ FEw 5.2)
along with the cost function
J = /_ (lolg +u)dt;s @20  (53)

where DE’ = 0 and N := EFE’ is invertible. Let £ — 0 as
t — —oo, and assume that the pair (4, D) is controllable and
the pair (A4, Q) is observable.

Then, for any v > 0, there exists a control law in the form
p(y) = K(v)y, for some constant matrix K(v), such that
the disturbance attenuation level for the system is less than or
equal to v if

1

I- WKN(t)K’ >0

5.4)
5This is done to simplify the ensuing analysis and not to burden it with

unnecessary notational complexity. The assumption does not bring in any loss
of generality of conceptual nature.

55— [1 = 35 a2y + 0(e)

oL
72 *

I 35 (Bpy + Zpp(1))(Zgy + Zpp(7)) + O(€)

O(e) ©
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and under the matrix K(v), the following GARE admits a
positive definite solution.

A'Z+ZA- Z(BB - %DD’)Z +Q +(C'K' + ZB)

(I- L KNKY ' (B'Z+KC) =0. (5.5)
72

0
In view of the above lemma, the GARE associated with the
fast subsystem is

22(t)Z + Z Aza(t) — ZS22(t)Z + Q22(2)
-1
+(GOK + 28u(0) (- ZENOK')

- (By(t)Z + KCa(t)) = 0. (5.6)

Define

x(t,y):=1- %KN(t)K' 5.7)

to simplify the notation. Introduce the set

Tise:= {7 >0:Yv >+ there exists a K(t,7)
of appropriate dimensions such that x > 0,
GARE (5.6) admits a minimal positive
definite solution Z,, and the matrix Aso—
Bzx_lKoz — (Szz — Bzx-'lBé)Zfs«, is

Hurwitz} (5.8)

and further define

Vige i=infly €TS8} q1pei= sup iy,
t€[to,ts]

For each v > <14, let the matrix K(t,7) be the matrix
that is characterized in Lemma 1 for each fixed ¢ in [to, 7).
Then the control law that delivers the « performance bound
for each ¢ is

ufys(7) = uiy, (y3(1)) = K(t,Myi(r) .
This control law, when transformed to the ¢ time scale, yields

uiso(t) = uigs(8,y(t)) = ufs, (45(0)) = K(t,7)y(t).
(5.10)

(5.9)

Composite Design

Let v > 7rys, and introduce the composite control

U= Uy + UT,(2) (5.11)

for the full-order system, where uj,(¢) is defined in (5.10).
Then, substituting the above into (2.1) and (2.3), we have

#1 = (A1 + B1KC1)z1 + (A12 + B1KCh)zy
+ Biu, + (Dl + BlKE)w
ety = (A1 + BoKCi)zy + (Azz + B2 KCa)z2
+ Bou, + (D2 + BzKE)’w
y = Ciz1 + Cozs + Ew
(5.12)
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with initial condition z(tq) = o, where z, is unknown as in
Section II, and

L(uow, z0) = [ (2@ + ) + K@Ou(t)?) dt
+la(t1)l, - (5.13)

The soft-constrained zero-sum differential game associated
with this problem has the cost function

L (1,0, 70) = (e, w,20) — 2{ Jll* + laold, }.
(5.14)
Since we are interested only in the upper value of the game,

we introduce the following transformation to cancel out cross
terms in z,u, and w.%

W= (v’I - E'K'KE)
- (w—-(Y*I-E'K'KE)” - (E'K'u,
+ [E’K’KCI EIK,KC2 ]."l:)) .

1/2

1

(5.15)

Under this transformation, the system can be represented by
(see Appendix E for the derivation)

@1 = (A1 + Bix ' KCy)zy + (A2 + Bix ' KCy) 22
+ Bix~'u, + (D1 + BiKE) (I - E'K'KE) ™/
z1(to) = 210
ety = (Az1 + Bax 'K Ci)z1 + (Agz + Box 1K Cy)xo

+ Byx~'u, + (D2 + B,KE)(v*I - E'K'KE) ™ ?u;

z2(to) = 20 5.16)

where x was defined by (5.7). The measurement equation can
be rewritten as (see Appendix E)

§:=y—-E(V*I- EK'KE)'E'K'u,
= ‘yzE('sz - E’K'KE) -1EIN—1(01$1 + Caz)
+E(I- E'K'KE) w. (5.17)

Also the cost function in (5.14) can be rewritten as (see again
Appendix E)

2 21 12 o2
Lo s, 20) = o), = Pleoll, + [ (ol
to
+ 22" C'K' X~ uy + uo|%s — |@]7) dt.
(5.18)

where Q is defined as

O = Qu+CiK'x 'KC, Q12+ CiK'x"'KC,
T |Qu+CLK'xIKC1 Qa2+ CLK'x1KCy |

Now, we can apply the results in Sections [I-IV to the
transformed game (5.16)—(5.18), which leads to the following
correspondences:

Ajj — Aij + Bix_lKCj H
D; — (D; + BiKE)(¥*I - E'K'KE)

SFor v > YIfs» We have x > 0, which is equivalent to vl - E'K'
KE > 0.

-1/2
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C; —¥’E(y*I - E'K'KE) 'EN-1C;;
E — E(y*I- EK'KE)™"*

B B XY, yey;
Qi; « Qij + CIK'XxT'KCj; vy 1
P — CiK'x Rex71;

Qrij — Qris; Qoij — ¥*Qoi;
where i = 1,2 j = 1,2. We can further obtain the following:
N« E(I-EKKE)'E'; LBy KN
~

Zl] — A= Zu ) §ij 9453 @U — Q= @,-
Alj - Az] = A5, Rt] - 'Yzi?'t]y

. 1 1 -~

M,,] — FD,D; = ?Ml

where i = 1,2 j = 1,2. From the above, we can deduce
that, under the conditions Sy + Ap0Q5 Ay, > 0 and
R22 + A/22M2_21A22 >0,

AD(_ZD;

A% 4o,

goﬂ—.go;

Ro—?Ro; MO .

Then, for v > ~y,, where vy, is defined in (3.51) for system

(2.1)~(2.6), we have the following direct consequences:

1

Zs‘y - Zs'y; Yoy ? oy

and the conditions specified in (3.50) are satisfied for the
game (5.16)—(5.18). Thus the slow controller for problem
(5.16)—(5.18) is
ug(t) = i7,(t, 9(t))
= —(BiZsy + KC1 + B4V — KC;U)i, (5.19)

- N 1 -
3, = ( 49 _ SOZﬂ)xs + (1 - znzﬂ)

- (BeyC{N~'+ B1K —U'B;K + VC4N™1)

- (§- EW*I - E'K'KE)'E'

- (¥N71C1+ K'B] =¥’ N71CU + K'ByV)i,);
£a(t) = 0. (5.20)

Verification of the above is straightforward if we observe the
correspondences

U,=U1; UpeUp; VieVy; VoV,

" . . .. _ 1 -

U701 Up=ly; VeV, Ve =W,
v

Now, we replace § by its expression given by (5.17) and
obtain the composite control law (see Appendix E for detailed
derivations)

”;C (t’ Yto vt]) = /’l’;fs(ti y(t)) + ﬁ;s (ta g[to,t])
= K:‘/ - (BiZs-y + KCI + BQV - KCQU)@C
(5.21)

-1

G, = (XD ~SoZen )e + (1 - %28.,2,1)
- (EeyCIN7 '+ BiK - U'B,K + VC,N™1)
c(y—(C1-Cal)ze);  &elto) =0. (5.22)

This leads to the following theorem

Theorem 3: For the singularly perturbed system (2.1)-
(2.6), let Assumptions 1-3 and 6 be satisfied, the pair
(Ag2(t), B2(t)) be controllable, the pair (Aa(t),Ca(t)) be
observable for each t € [to,ts], and the following condi-
tions hold:

szz < Zf.y(tf), where Zf.y(tf) is the solution to (3.55)
at t = t; with v fixed.

Y?*Qo22 > Zgsy(to), Where Zj,.(to) is the solution to (5.6)
at t = to with v fixed.

Then, ¥ v > max{~v1s,71ss}, if we apply to the system the
composite controller p7, defined in (5.21) and (5.22), 3 €}, > 0
such that, Ve € [0, efy] the disturbance attenuation level + is
attained for the full-order system.

Proof: Fix v > max{vyr,,V1ss}, and consider the dif-
ferential game described by (5.16)—(5.18). The fast sub-
system is

&% = (Az2 + Bax ' KCp)z} + Boxlulg
" 4(D;+ BKE) (I - E'K'KE) Y ut,
it =4*E(v*I - EK'KE) ' E'N~1C,a’
+E(y’I - EK'KE) ™ at
with the associated cost function being

o o]

By (ugnay) = [ (155, +205C5R Mty
—o0

+ futg 2, - Jw5]*) at.

The open-loop GARE of the above game is the same as (5.6),
which admits a minimal positive definite solution Z¢,,. Then
both Ajs + Bzx_1K02 and Ay — Bzx_1K02 — (Sz2 ~
Byx~1B})Zy,, are Hurwitz. We can also see from earlier
correspondences that the slow GRDE’s for the transformed
game (5.16)—(5.18) are the same as (3.21) and (3.22). Thus,
by the proof of 3) of Theorem 2, we deduce that when
the control law described by (5.19) and (5.20) is applied
to the game (5.16)—(5.18), the maximal cost with respect
to the disturbance w is bounded above by zero. Hence, when
the composite controller is applied to the game (2.1)—(2.6), the
maximal cost with respect to the disturbance w is less than or
equal to zero, which means that the disturbance attenuation
level v is achieved for the system (2.1)~(2.6). O

The Infinite-Horizon Case

‘We now turn to the infinite-horizon case. Let A, B,C, D, E,
and @ be time-invariant, Q5 be zero, and ty = —o0,t5 = oc.
Similar to the finite-horizon case, we revisit the fast subsystem
and introduce the GARE (5.6), where the coefficient matrices
are now independent of ¢. We define x as in (5.7) and introduce
the set I'rf400 as in (5.8) (we drop the superscript ¢ since now
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the set is ¢ invariant). We define 7,00 to be the infimum of
“YIfsoo- Then the optimal static feedback control law for the
fast subsystem is the same as (5.10).

Now, let the fast control law be active in the full system by
defining u to be as in (5.11). Also, introduce the transformation
(5.15). The transformed game is then described by

1= (An + Bix "' KC1)z1 + (A1 + Bix 'K Cp) 2
+ Bix"'u, + (D1 + BLKE)(y*1 - E’K’KE)_lmm
ek = (A1 + Bax T KC1)zy + (A2 + Box ' KCy) o
+ BzX—lus + (D2 + BzKE)(’y2I — EIKIKE)_1/211}
(5.23)
j:=y—-E(y] - EK'KE) 'E'K'u,
=7v'E(y’I - E'K'KE) _IE!N_I(Clxl + Caz2)

+E(+*I - EK'KE) ™% (5.24)
L ) — oo 2 1 gt —1
A(ts, W) = (|$IQ+2Z C'K'x " u,
—00
+luslies — @) dt (5.25)

where u,(t) is now a function of (), 7 < t, and x,Q
are as defined before. Now, several substitutions similar to
those in the finite-horizon case apply here, leading to a slow
controller, which is the same as in (5.19) and (5.20). Finally,
the composite control law u7, is the same as (5.21) and (5.22).
These results are summarized in the following theorem.

Theorem 4: Consider the singularity perturbed system
(2.1)-(2.6), with t5 = oo0,tp = —00,Qf = 0,Qo = oo and
A,B,D,C, E,Q time-invariant. If assumptions 1-6 hold,
V v > max{Yrscc:Vifsoo}, if We apply to the system the
composite controller p7. defined in (5.21) and (5.22), then
3 €, > 0 such that, V € € [0,¢€,), the disturbance attenuation
level v is attained for the full-order system.

Proof: Fix v > max{Y1scc,VIfscc}, and consider the
differential game described by (5.23)—(5.25). The fast subsys-
tem is

Ty = (Azz + ng‘chz)xf + Bzx_lusf
+ (D + B:KE)(v*I - E'K'KE) ™y

35 :=v*E(y*I - E'K'KE) " E'N~1Cya;

+E(v*I - EK'KE) ™ ?uy,

with the associated cost function being
o
- o 2 -
Lys(uss,wy) = ] (12415, + 225 CoK X uqs
-0
2 .12
+ |togly-r = I05|") dt.

The open-loop GARE of the above game is the same as (5.6),
which admits a minimal positive definite solution Z¢,,. Then
both Ay + Bzx_lK02 and Ay — BQX_IKCQ — (522 -
Byx~'BY)Z,., are Hurwitz. We can also see from the earlier
correspondences that the slow GARE’s for the transformed
game (5.16)—(5.18) are the same as (3.61) and (3.62). Then,
by the proof of part 3) of Theorem 1, we deduce that when
the control law described in (5.19) and (5.20) is applied to
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TABLE I

€ 1 0.1 0.01 0.001 0.000

55.1993 17.3221 9.9331 9.1197 9.0308

THoo(€)

the game (5.23)—(5.25), the maximal cost with respect to the
disturbance w is bounded by zero. Hence, when the composite
controller is applied to the game (2.1)-(2.6), the maximal
cost with respect to the disturbance w is less than or equal
to zero, which means that the disturbance attenuation level ~
is achieved for the system (2.1)-(2.6). |

VI. EXAMPLES

We present here some numerical results for the infi-
nite horizon case. As stressed earlier, the four quantities
VIsoos VIfoos VIfsoos AN Yofeo Pplay important roles in the
computation of an approximate value for v} (). We already
know the relationship among the latter three quantities,
namely, Vrfo < Vfsoo < Yofoo, DUt we do not know
how 71500 is related to them. In the following examples,
we study this relationship numerically, as well as the behavior
of the composite and slow controllers. We will also see the
effectiveness of the approximate controller on the original
system for nonzero values of ¢ > 0.7

Example 1
Consider the system

e R K R g ECE

y=[2 1][iﬂ +[0 3w 6.2)

{o <]
L,= / (223 + 22122 + 323 + |ul® — Yw|?)dt  (6.3)

—o0

where the fast subsystem is open-loop unstable. By using a

particular search algorithm, we can compute the four basic
quantities:

VIsoo = 6.1160;

VIfsco = 9.0208;

VIfoo = 9.0208;
Yofoo = OC.
In Table I we compute the minimax disturbance attenuation
level 77, (€) of the system (6.1)-(6.3) for different fixed
values of e.

Note that as € — 0,77,.(€) — max{¥rsc0, VIfoo}- NoW,

we choose v = 9.1 > max{Yss00,VIfsco} and design the
suboptimal controllers for the system based on this value of ~y

Zgy = 5.9052; Y,y = 5.8966;
Hl, = —2.3463%,;  pj, = 12.0913%, — 2.9945y

where

&, = —3.1178%, + 2.6166(y — 4.82144,) ;

%, = —3.1178%, — 14.8382(y — 4.82143,) .

"In these examples, the relative accuracy is 0.002.
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TABLE II TABLE IV
€ 1 0.1 0.01 0.001 0.0001 € 1 0.1 0.01 0.001 0.0001
s o [+ 00 00 [} oos 3.3600 2.8121 2.6231 2.5993 2.5993
v o oo 10.0070 9.1265 9.0976 yx 1.4798 1.5100 1.5507 1.5716 1.5716
TABLE III TABLE V
€ 1 0.1 0.01 0.001 0.0001 € 1 0.1 0.01 0.001 0.0001
Vioo(€) 1.4058 1.5071 1.5345 1.5378 1.5382 i oo 00 00 0 oo
b 1.5556 1.5556 1.5556 1.5556 1.5556

Then, we use uj,, u}. in system (6.1)—(6.3) and obtain the
corresponding disturbance attenuation bounds 4 and 5,
which are in Table II.

We see that only the composite controller achieves the
desired performance bound for small values of ¢ > 0. The
slow controller, designed based on the slow subsystem only,
leads to an infinite attenuation level.

Example 2

Consider the system
-7.?1 _ 2 1 Ty 2 1 0
[6532] B [—1 —2} [xz] * [2]u+ {3 O}W €4

y=[3 1]{2] +0 1w 6.5)

Ly= / (223 + 2z172 + 323 + |u® — V|w|®) dt  (6.6)

where now the fast subsystem is open-loop stable. The four
performance levels for this system are
VIsco = 1.5382, VIfoo = 15000,
VIfsoo = 1.5000; Yofoo = 2.5992.
Note that here we have the relationship Yofoo > VIsco >
YIfsco = VYIfoo-

We can also compute the minimax disturbance attenuation
level 77 (¢) of the system (6.4)—(6.6) for different values of
€, tabulated in Table III.

Note again that as € — 0,7} (¢) — max{Yrscos VIfoo }-
Now, we choose v = 2.65 > max{¥rsc0,Vofoo} and design
the slow and composite controllers based on this value of +:

Zey =2.1786; Yoy = 0.5290;
ur, = —1.0674%, ; pr. = —0.14451%, — 1.0936y
where
o = —2.68342, + 1.9426(y — 0.8439%,) ;

&e = —2.6834%, + 0.023011(y — 0.84393.) .

Then, we use u}j, and u}, in system (6.4)—(6.6) and obtain
the corresponding disturbance attenuation bounds ~* and +7,
which are tabulated in Table IV.

Note that when we choose a v larger than the maximum
of Yrsoo and Y,500, both controllers achieve the desired

performance level for the full order system. But, the com-
posite controller achieves a much lower attenuation level
than the slow controller. Now, suppose we choose v = 1.6,
which is larger than the max{Yrs00,7rfc0} but smaller than
max{Yrso0s Yofoo }» and design the controllers based on this
value of ~:

Zey = 3.3788;
W, = —1.64473, ;

Toy = 0.56402;
1. = —0.099718%, — 1.3840y

where

s = —2.5744%, + 7.6196(y + 1.2640%,) ;
e = —2.57443, — 0.89407(y + 1.26403..) .
Then, if we use p}, and p}, in system (6.4)-(6.6), we obtain
the disturbance attenuation bounds % and ~+, as shown in
Table V.
This time, only the composite controller p}, achieves the
desired performance level. The slow controller 4}, does not

yield a finite performance, despite the fact that the fast
subsystem is open-loop stable. 0O

Example 3
Consider the system

AR Y [ S T R

y=2 1][2]“0 1w (6.8)

Ly= / (222 + 22122 + 222 + [uf® — Y |w|P)dt. (6.9)

—o0
We again compute the four performance levels:

YIsoo = 2.1596 ;
'ylfs,x, = 0.63246;

VIfoo = 063234,
Yofoo = 0.70708 .

Note that here we have the relationship Yisoo > Yojoo >
YIfsoo = VIfoo-
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TABLE VI
€ 1 0.1 0.01 0.001 0.0001
Voo (€) 1.8396 2.1009 2.1533 2.1590 2.1595
TABLE VII
€ 1 0.1 0.01 0.001 0.0001
s 8.1079 3.8172 2.1997 2.1997 2.1997
v: 6.0486 2.8533 2.1994 2.1994 2.1994

We can compute the minimax disturbance attenuation level
7Yoo (€) of the system (6.7)-(6.9) for different values of € as
shown in Table VI

Note again that as € — 0,7}, () — max{Yrs00,Vfoo}-
Now, we choose 7 = 2.2 > max{YIsco, Yofoo}» and design
controllers for the subsystems based on this value of ~y

Yoy = 3.5928;
), = —1.6632%, — 0.68303y

Z4y = 1.2442;
ur, = —1.7770%, ;

where

&, = —3.2774%, + 43.1995(y — 0.16654;,)
ie = —3.27742, + 39.4653(y — 0.16654z,) .

Then, we use p}, and uj. in system (6.7)-(6.9) and ob-
tain the corresponding disturbance attenuation bounds v; and
~%, which are tabulated in Table VII. Now, both controllers
achieve the desired performance level as € — 0. This is to be
expected, SinCe Yrooo > Yofoo-

VII. CONCLUSION

In this paper, we have provided a complete analysis of the
singularly perturbed H°°-optimal control problem with imper-
fect state measurements, in both finite and infinite horizons,
by relating it to a class of singularly perturbed differential
games. A major contribution of the paper is the proof of
existence and construction of a composite controller, inde-
pendent of the singular perturbation parameter, under which
the associated differential game has a bounded upper value,
and the full-order system meets a desired H°°-performance
bound. Such a composite controller is designed sequentially,
based on saddle-point solutions of parameterized fast and
slow subgames. The design procedure is first to obtain a
static output feedback controller using the fast dynamics, to
be followed by a dynamic output feedback which uses the
dynamics of the “reduced” slow game. As discussed in the
paper, such a composite controller may not be able to push
the performance of the full-order plant to the ultimate limit
max{7rs,Yrf}, N0 matter how small ¢ > 0 is, whereas in
the perfect state measurements case studied in {18] this was
possible; this indicates a loss of robustness due to the imperfect
nature of the measurements. The paper has also presented
conditions under which a controller designed based on the
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slow subsystem only can achieve a desired (albeit, inferior)
performance level.

The composite controller design methodology presented in
this paper admits two significant interpretations, with impor-
tant implications for practical controller design applications.
In the case that the full-order system is completely known,
our composite controller can be tuned precisely to guarantee
a certain desired performance bound and also to exhibit
additional robustness with respect to changes in the value of
the singular perturbation parameter €. If, on the other hand,
only a reduced-order model is available, which is a common
situation in most real world applications, our results show
that a composite controller (PI controller) is generally more
robust than a slow controller (I controller). In this case, one
can only expect a performance level up to 475 (§7s00 in the
infinite-horizon case) and only for the slow subsystem. As
shown in the paper, such a controller design, which yields
essentially an I controller, does not guarantee any performance
for the full-order system. Our results show that, with a PI
controller design, one can achieve a performance level up
to max{~yrs, Y1fs} (MaxX{¥1s00, ¥Ifsco} in the infinite-horizon
case) “safely” if the controller is designed properly, and the
attained performance level may in fact be well below the level
41s (B1s00 in the infinite-horizon case) if the fast subsystem is
“benign.” Thus, our results provide a theoretical basis for the
common observation that a properly tuned PI controller often
performs remarkably well in real world applications. Also,
our results suggest two possible general purpose schemes to
tune the desired PI controller. One scheme is to design a P
controller first to cope satisfactorily with the fast modes of
the system, and then, with the P controller being active in
the system, to reevaluate the reduced-order model and design
an I controller for it. For the other scheme, we first form the
slow controller, then design the P controller, and finally adjust
the slow controller and observer gains according to (5.21) and
(5.22). In both cases, the P and I controllers should be designed
based on a common performance level .

One immediate, but not trivial, extension of these results
is to the sampled-data measurement case, so as to obtain the
counterparts of the results of [14] and {16] in the singularly
perturbed case. This work has already been completed for
the (sampled) perfect state measurements case, and the results
have been presented in [26]. The derivation of the counterpart
of this in the imperfect state measurements case also seems to
be within reach. Another extension would be to the problem
with digital control action, i.e., when the control action remains
constant over each sampling interval, in the perfect state or
imperfect state measurements cases [15], [27], [28]. Other
possible extensions would be to the multitime scale H°-
optimal control problem and also to singularly perturbed
nonlinear control systems, which are topics currently under
study.

APPENDIX A

A SET OF USEFUL IDENTITIES

We first_observe the following useful relationships be-
tween U], Ug, Vl, Vz, Ul, Ug, ‘/1, ‘/2, U, V, U and V, which
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were defined in (3.42)-(3.49) and (3.38)-(3.41) (see [18,
Appendix B] for a proof).

Set of Identities 1:

) ApU; + 82V: = -8y

2) A22U2 + 522V2 =4y

3) QU; - A;2V2 = Q;l

4) Q22U1 AV = Ap,

5) ApUn + RV = —Ry;

6) A22U2 + R22V2 = AJZ

7) MaUs — AgVy = My

8) Myl — ApaVi = A1

9) 422U+522V Az — SZIZs'y

10) @0 ~ A22V Q21+A1zzs~r

11 A'2U+R22V A12 R21 Ea'y

12) MU — AoV = My +A21Z

We will use the above relationships throughout the deriva-
tions in the appendixes to follow.

APPENDIX B

SIMPLIFICATION OF PARAMETER MATRICES
OF THE SLOW SUBSYSTEM

First, we introduce some matrices to simplify the derivations
in the sequel.
T = AnQy Ay p:=7"1 - DAY QA7 Dy;
g = AI22(D2D§)_1A22 .

In terms of these matrices, we can obtain the following
expressions using some simple matrix operations and matrix
inversion identities:

p= ’721 - Dgﬂ’—lDz (Bl)
1 1 1 D 1 ’ _lD
p = I+? A w—?szz 2 (B.2)

-1
p D1 = po D; (71' - :71—2021);) (B.3)

1 AN _ -
(ﬂ- - ’_Y—z D2D2> A2Qs = (D2Dy) !
-1
- Az (U -= sz) (B.4)

1 -1 —-1
(W —z DzDQ) = 3Dy D)) " Agy (U - = sz)
- Ay (D2 D) ™" — 72(D2D5)

(B.5)

By using the identities (B.1)-(B.5), the verification of
(3.10)-(3.20) is straightforward but lengthy; see [23] for
details.

In the verification of (3.25)-(3.27), on the other hand, a
different set of matrix identities is used, which are given
below. The details are again lengthy, but brute force; they
can be found in [23].

Set of Identities 2:
=R+ R'PQ,, RR
(R- P4 o) PQ3; = R- lPé@{zl
3) RP-'=R'4R- IPZ'Q22 P,R71-
B})(S22 + A22Q22 A22)

D (R- Pz’Qz‘zle)
)

y7 —1—
RY(P{Qz, Agy—
(A22Q22 P, - B2)R !

4) RO~ 1(A22Q22 Py — Bz) (r - 7D2D2) ~1 l(Pé
sz Agp - Bz) (S22 + A22Q%z Ayy)™!
5) (B2 — A22Q35 P,)R™Y(P5Q,, Azz - By =
T — 5 DyDj — (522 + A22Q4; Azz)
6) (B: — A12Q5 P))R-\(P}Qy; Agy — BY) — A12Q5
Ajy + —rDlDz —S12 — le@}l%
7) (A22Q P2 — BZ)R_I(P’ P3Q33 Q21) — (A22Q3;
Q21 — A1) = —A22Q22 Qyy + Az1 . O
To prove (3.28)-(3.30), we rewrite matrices
A9, LB NB, CB,Q°, and DD in different forms,

by repeated application of the relationships (B.4) and (B.5)

AP = Ay — (D1 Dy)(D2D}) ™ gy + ((DIDS)
- (D2Dy) T Agp ~ A12)<0 -= sz)

- (A52(D>D4) Aon - —-Qzl)

P = lz (L1 — (D1Dy) (D2 DY) Ly
+ ((DID )(D2 D} ) 1Az — Ara)

. (U -— sz) (Azz(DzD'z)_le - Cy))

NO (N Ly(Do DY) L,y
(L’2(D2D2)‘1A22 - Cy)
-1
(-5 9n) (A0 1, -

CcP = Cy — L'2(D2Dl2)_1A21 + (L;(DgDé)_lAzz - ()
-1 - 1
. —_— — / / l — —
(0 sz) (Azz(D2D2) Az " Q21)

Q" = Qu — Y24}, (D2 D}) " Ay

+ (Azl(DzDz)_lAzz — 2 Q12)

(o-5 5 Qn)” I(A’zz(DzDé)_lAzl - 2 Qm)

DUpY = —1- (D1 D} — (D1 D4y) (D2 D)~ YD, D)
+ ((DID Y(D2 D)1 Agy — Ay)
. (‘T - = sz)_l

: (Alzz(DzDz) Y(D:D}) - A1)).
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Next, we introduce the following mapping rules (correspon-
dences):

N~R
Qi; ~ DiDj

Ayj A;.’Q
Fi ~ Li;

B; ~ C;
D;iDj; ~ Qij;
where ¢ = 1,2 7 = 1, 2. Then, we have the following:

— ~ -~ ~ ~ ~ ~ ~ ~
A~ Ay — AYy My My — (Riz + Ay M3yt Apy)
< (Raz + AgyMyg' Agy) ™1 (A — Ay My M)
So ~ Riy + Ay Myy' Agy — (Rug + Ay My, Aga)
- (Roz + AbyM3;' Agy) ™ (R + A My Agy)
—0 . L. - . e o
Q ~ My — MiaMp Moy + (A1 — MiaMy! Ag)
+ (Roa + ApyMy;' Agg) ™ (Al — Ay My M)
It is also to see that
AD ~ AD’;
RD ~> ’}’2ND;

BD ~ CD,; PCI ~ '}/2LD
QD ~ ’)’ZDDDDI;
1
DDDDI > ? QEI i

This completes the verification of (3.28)-(3.30).

Verification of (3.36) and (3.37)
We only need to establish the following three identities:

Set of Identities 3:
1) RE-Y(BYZ,, + PY) = R"Y(B{Z.,y + P{ - P;U +
ByV)
2) NOY(CP% T, +L7) = NHOE,, +L -
LyU + C,V)
3) GDRD_l(BD'Z,,.Y+PD')+CD+LD'Z.,-Y = Cl‘}‘,y% L’l_
C,U + ;1, LLV.
Proof: The first one can be proven using the earlier sets
of identities 1 and 2 (see [23] for details).
For the second identity, first we note that

TwU0, VwV

where we have introduced the additional correspondence
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Then

RD—I(BD'Z,.Y + PD/) - ND-—I (CD% Zs'y + LDI)
R-Y(BYZ,, + PY) ~» N7! (012,., + L

+ CyV — L, ﬁ) .
Thus, the second identity is true.

For the third identity, we first substitute on the left-hand side
the first identity and the expressions for G&, CU, and LF; then
we apply the Set of Identities 1 to arrive at the right-hand side;
see [23] for details.

APPENDIX C

VERIFICATION: (4.31) IS THE SOLUTION TO THE SLOW SUB RDE
(RESPECTIVELY, SUB-ARE) OF (4.35) [RESPECTIVELY, (4.30)]

First, we evaluate the parameter matrices for the slow sub-
RDE (respectively sub-ARE) according to formulas (3.15),
(3.18), and (3.20) in [18] (see also equations at the bottom
of the page).

0:=A" - 5oZ,, — (ryzz;} - Z,,,)—l

(€™ +9*5Z T NP (P + 17 Z,,)
o[ 3
0 QI 9 )
Q:= _LDND—I (CD + LDI'Y2EQ-71) (722;71 _ Zg—y)_l
0= — (Y’E5} = Zyy) (O + 47551 L)
NOTHCT+ LPYEL) (VB - )

Next, we verify that Z,., is the solution to the following RDE:

-1

-— el — I —_ —_ A~
By + F§ Say + Esy F§ — B S58ey + Q° = 0.

‘We can simply show that the 11-block, 12-block, and 22-block
of the left-hand side are equal to zero. The verification is
straightforward but tedious, and it can be found in [23].
Similarly, we can show that =,., is the solution to the slow
sub-ARE in the infinite-horizon case. Then, by Theorem 5 of
[29], there exists a minimal solution Z,. to the slow sub-ARE

Zgny ~ gy - such that F§ — S5, is Hurwitz.
e — AQ — BBRO-Y(BYZ,., + PY)
0= | (P} - 2.,) 7 (07 + PERHP) NO- 1R i

—PDRD_I(BD'ZS.Y + PD/) ]

~ ]
Q = [_ (Za’yBD + PD)RD—1PDI (Z,«YBD +PD)RD—1(BD'Z,,Y +PE|/)
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APPENDIX D

PROOF OF LEMMA 1

The differential game associated with this problem has the
cost function

L, =J—?|uw|?. (D.1)

Substituting the control law v = K(4)y into (5.1) and (D.1),
we arrive at

¢t =(A+BKC)z+ (D + BKE)w
L‘Y = / (|z|2Q+C'K’KC + 2$,C,K,KE'U)
—00

2
=l pxkE)dt-

We need to show that, under the condition specified in the
lemma, the maximum cost (with respect to w) to the one-
person maximization problem above is zero. By Fact 1 in
[18], the observability of (A, Q) implies that (A+ BKC,Q +
C'K'KC) is observable. Under the condition of (5.4), the
maximum value is bounded if the following ARE admits a
nonnegative definite solution:

ALZ+ZAc+ZMZ+Q. =0
where

A.:=A+ BKC+ (D + BKE)
- (Y*I - E'K'KE)"'E'K'KC
M. := (D + BKE)(y*I - E'K'KE)™!
- (D'+E'K'B')
Q. :=Q+C'K'KC +C'K'KE
- (Y*I-E'K'KE)"'E'K'KC.

Now, we observe the following simple relationships:
(v ) 42 ( ' 42

o 1 1 -1
(v*I - EK'KE)"'E'K' = 2 EK (1 -~ KNK')

which can be proved by simple matrix inversion identities.
Then, we can rewrite A., M., and Q. in the following form:

1
A, =A+B(I—%KNK’) KC

1

-1
M.= -BB'+ —EDD’+B(I— %KNK’) B'
v 2

1
Q.=Q+C'K’ (I - Wiz KNK’) KcC.

Hence, the ARE can be rewritten as (5.5). This completes the
proof.

APPENDIX E
DERIVATIONS FOR THE COMPOSITE CONTROLLER

Verification of (5.16)-(5.18)

We first note the following set of identities, which can be
proved by simple matrix inversion formulas:

Set of Identities 4:
1) (v*I-EK'KE)™ =
1/¥2)E'K'X~'KE)
2) (v*I-E'K'KE)'E'K' = (1/4*)E'K' X~
3) (¥N1-K'K)' =EI-EKKE)"E. O
In view of these identities, it is a simple matter to establish
the validity of (5.16)—(5.18).

(1/72)(1 +

Verification of (5.22)
We only need to show that

-~ E(YI - E'K'KE)'E'K’' (B} Zsy + KCy + B,V
- KGU) +E(+v*1 - EK'KE) ™ E'(y*N-1¢,
+K'B —*N7'C,U + K'ByV) = C, - CU

which is true since the left-hand side of the above can be
written as

-E(v*I - E'K'KE)'E'K’' (B,Z,, + KC,
+ByV - KGU) + E(*I - EK'KE) ™"
- E'(Y’N~1C, + K'B, - v*N~1C,U + K'B,V)
= E(v'I - EK'KE) 'E'(¥*N™' - K'K)
(CL-CT) = - T,
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