IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 9, SEPTEMBER 1996

1295

Parameter Identification for Uncertain
Linear Systems with Partial State
Measurements Under an H°° Criterion

Zigang Pan, Member, IEEE, and Tamer Basar, Fellow, IEEE

Abstract—This paper addresses the worst-case parameter iden-
tification problem for uncertain single-input/single-output (SISO)
and multi-input/multi-output (MIMO) linear systems under par-
tial state measurements and derives worst-case identifiers using
the cost-to-come function method. In the SISO case, the worst-
case identifier obtained subsumes the Kreisselmeier observer as
part of its structure with parameters set at some optimal values.
Its structure is different from the common least-squares (LS)
identifier, however, in the sense that there is additional dynamics
for the state estimate, coupled with the dynamics of the parameter
estimate in a nontrivial way. In the MIMO case as well, the worst-
case identifier has additional dynamics for the state estimate
which do not appear in the conventional LS-based schemes. Also
for both SISO and MIMO problems, approximate identifiers are
obtained which are numerically much better conditioned when
the disturbances.in the measurement equations are “small.” The
theoretical results are then illustrated on an extensive numerical
example to demonstrate the effectiveness of the identification
schemes developed.

I. INTRODUCTION

ARAMETER identification is a vital part of any.suc-
cessful design for controlling systems with unknown
parameters. For continuous-time linear systems, the Kalman
filter-based identifier is the prominent design method for on-
line parameter identification. When the state variable and
its derivative are both available for identification purposes,
the Kalman filter-based identification scheme can be applied
directly [1]. On the other hand, if the available information
contains only noise-corrupted output measurements, the iden-
tification scheme must utilize the well-known Kreisselmeier
observer in the single-input/single-output (SISO) case [2] or
a general prefiltering-based design for the multi-input/multi-
output (MIMO) case [3], [4] so that the problem can be
converted to one that can be solved by a Kalman filter-based
method.
Recently, worst-case parameter identification for general
nonlinear systems where the unknown parameters enter lin-
early in the system dynamics has been studied in [5] under
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noisy full state measurements. It has been shown there that
the worst-case parameter identification problem without the
measurement of the state derivative can be dealt with by intro-
ducing small measurement noise in the optimization process.
The resulting identification scheme can achieve a performance
level arbitrarily close to the one where the state derivative
is available, as the intensity of the measurement noise, say
e > 0, decreases to zero. Also, in [5] a reduced-order
identifier was constructed which is much simpler in structure
and has asymptotically the same performance as that of the
full-order worst-case identifier. The structure of the worst-
case identifier closely resembles that of a least-squares (LS)
identifier except for additional state estimate dynamics and an
extra negative definite term in the differential equation for the
error covariance matrix.

In this paper, we study the worst-case parameter identi-
fication problem under partial state measurements, but for
linear systems only. We construct worst-case (full-order) iden-
tifiers as well as their appropriate approximations which are
numerically better conditioned for implementation. We will
first study the SISO case in detail, which will allow us to
introduce the solution concept, and discuss the main ideas in
the derivation and verification of full-order and reduced-order
identifiers without introducing cumbersome notation (which
unfortunately cannot be escaped from in the MIMO case).
By representing the system in output injection form in state
space, we can apply the cost-to-come function method [6]-[9]
as in [5] to obtain the full-order worst-case identifier, provided
that the desired performance level is achievable. It will be
shown that the worst-case identifier contains the Kreisselmeier
observer as part of its structure. Our derivation leads to an
optimum choice for the observer parameters which can be
obtained from the solution of an algebraic Riccati equation. As
in [5], the worst-case identifier structure obtained contains ad-
ditional dynamics for the state estimates which are not present
in the conventional LS identifiers. As the noise intensity in
the measurements decreases, the full-order identifier becomes
numerically ill-conditioned. To alleviate this, we construct
an approximate (reduced-order) identifier that is simpler in
structure by two integrators and is numerically much better
conditioned for implementation. In contradistinction to the LS
or LMS algorithms, where the cost functions are restricted
to some fixed quadratic weight on the identification error,
the worst-case identifier presented here is derived under an
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arbitrary quadratic cost function. This freedom in the choice of
the cost function permits further fine-tuning of the identifier to
any specific application at hand. Since obtained under a worst-
case analysis, the identifiers presented here possess guaranteed
robustness properties which may not be present in LS or LMS
identifiers. In particular, they can tolerate unmodeled dynamics
and generate parameter estimates which satisfy prespecified
attenuation bounds. Barring the complexity in notation, these
results are easily generalizable to the MIMO case which is
done here without providing detailed proofs.

The balance of the paper is organized as follows. In the
next section, we provide a precise problem formulation for
worst-case identification in SISO linear systems. Then, we
briefly present in Section III, the well-known Kreisselmeier
observer design that allows for the application of Kalman
filter-based identification schemes. In Section IV, a worst-case
identifier for the SISO problem is derived, and two special
cases are discussed where the structure of the identifier can be
simplified. We prove the optimality of the identifiers derived
and discuss the similarities as well as the differences between
these and the conventional ones presented in the previous
section. Counterparts of these results in the MIMO case are
summarized in Section V. An extensive simulation study of
a third-order five-parameter SISO example is presented in
Section VI to illustrate the theory. The paper ends with the
concluding remarks of Section VII.

II. PROBLEM FORMULATION
We consider the class of SISO linear systems described by
an nth order transfer function
bms™ 4+ -+ bo

H =
() 5" 4 ap_1s" 4 - ag

where m < n, and all coefficient terms are unknown. We write
this system in the state-space representation form as

z =Agx — ay + bu (la)

y=eix (1b)

where e; denotes the ith coordinate vector in IR™

0 I, —
A, = (n—1)x1 n—1
g 0 O1x(n-1)
U1 O(n—gz——l)xl
a=| b= m
ag bo

I; denotes the i x 4 identity matrix (the subscript will be
suppressed if ¢ = n), and 0,4, denotes the 7 X j matrix of
Zer0s.

To study the robustness of an identification scheme associ-
ated with this system, we will take the plant dynamics to be
further perturbed by an unknown additive noise w, leading to
the following general model:

&= Aw + (A11y + Apu)d + w;
y=ejz.

z(0) = xzy (2a)

(2b)
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Here # is an r-dimensional unknown constant parameter,
Ajr and Ay are some known constant matrices (both of
dimensions n X ), Ag is as defined above, and w is an n-
dimensional unknown system noise whose components belong
to L. Note that the allowable class of disturbances is
fairly general and includes in particular noises generated by
unmodeled dynamics.

For the particular SISO system described above, the appro-
priate parameters and coefficient matrices are

0= {_ﬂ; A= (1 0n><(m+1)]

O(n—m—1)x(m+1)

A = {0(”—m*1)xn +1

0(m+l))<n
and 7 = m + 1 4+ n. We will in fact study this problem with
general (known) matrices A1 and A4 to allow for possible
additional a priori information on the plant. ,
Even though this is the identification problem we wish to
address in this paper, using a particular worst-case optimiza-
tion technique (to be elucidated below), the singular nature of
the underlying optimization problem forces us to embed this
original problem in a larger class of parameterized identifi-
cation problems, as in [5]. These are obtained by replacing
the original measurement y by one that is contaminated by
some small measurement noise, ev, where ¢ is a small positive
scalar and v is an unknown £°° function. Hence this more
general class, parameterized by e, is described by the state
and measurement equations

T =Az + (A11y + A1pu)0 + w;

y =ejx +ev.

z(0) =xz¢ (3a)

(3b)

Clearly, the original problem can be recovered as a special
case of this more general one by either setting ¢ = 0 or taking
the measurement noise v to be identically zero. Furthermore,
any robustness result (such as satisfaction of a disturbance
attenuation bound) to be derived for this problem will apply
(with additional margin of robustness) to the original problem.
Of course, this measurement noise-perturbed problem would
also be of independent interest, as any identification scheme
developed for it would exhibit robustness to unmodeled mea-
surement inaccuracies. It should be noted that when the
measurement noise v is actually present, then the substitution
of x1 X y in the system dynamics (3a) is based on the
understanding that the disturbance w includes, in part, the
measurement noise v.

Henceforth, we work with the general perturbed model (3a)
and (3b). For this system, we seek an estimate A(¢) of the
unknown parameter vector ¢ to be generated by

0(t) = 6(t, yo,4), upo, 1)) ' “

where & is an identifier (equivalently, estimator—yet to be
determined) which is piecewise continuous in ¢ and Lipschitz
continuous in o, ;) and o, ¢ Let us denote the class of these
admissible identifiers by A.

Our objective, succinctly stated, is to find an identifier
6 € A that minimizes an appropriate norm of the identification
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error under the worst choices of the uncertainty quadruple
(0, 8, Wi, 00)s V[0, 00))- One way of formulating this objec-
tive is to view the identification problem as a disturbance
attenuation problem (as in H control), where the disturbance
to be attenuated is the uncertainty quadruple above, and the
output is the identification error (see [5] for further motivation
for this approach to identification). Accordingly, we introduce
as a natural candidate the performance index

L(6) = sup
€058, W[, 001 V[0, o)
A(+)|12
. HG - H(t)“Q(tvy[o,thu[o,:]) (5)
[[wl? + [lv]l* + 16 = fo[y, + |20 — Tol3,
where || - ||z denotes an appropriate dimensional £ (semi-)

norm, weighted by R, and | - |p denotes a Euclidean norm,
weighted by P. We assume that Q(-, -, -) > 0, Pp > 0, and
Qo > 0. 8y and T, are some initial estimates for 6 and o,
respectively. The weighting matrix P, will be chosen in such
a way as to reduce the order of the optimal identifier to be
obtained, as to be discussed later.

The optimal performance level is the quantity v* defined by

v = inf {L(6)}'*. (6)

As well known in linear and nonlinear H® control [10],
we can associate with this system a class of soft-constrained
differential games, indexed by a parameter v > 0, with a cost
function

J,Y((S;ill'o, g, Wio, 00)» Vo, oo)) =
08 = St g = PO+ o)
—7*(10 = Bo[Z, + mo — To|%,) (7)

where § is the minimizer and the quadruple (zo, 8, wig, c0),
V[0, 0)) the maximizer. By [10], the quantity v* is the “small-
est” value of v such that this game has a zero upper value.
Given an achievable performance level v > 0, we will say
that a particular estimator 6 € A achieves that level, if

sup
20,0, W[0, 00)s V[0, s0)

J’y(37 Zo, 90, Wio, co0)» 1)[0,00)) =0. (®

This completes the formulation of the worst-case identifica-
tion problem. We will present the solution to this problem
in Section IV which will be parameterized by ¢ > 0. In
the same section, we will also study the limiting case as e
approaches zero which captures formally the situation when
the measurement is almost noise free—the problem of real
interest to us. To be able to compare our results with the
existing identification schemes based on the Kreisselmeier
observer design, we first present, in the next section, an
overview . of the latter.

III. KREISSELMEIER OBSERVER DESIGN

For the identification of the parameter vectors a and b in
(1), a general methodology was developed in [2], where stable
prefilters for both the measurement y and control input u were
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introduced so as to reduce the problem to one where the LS
method can be directly applied. These prefilters are known as
the Kreisselmeier observer.

The prefilters are constructed as follows. First choose an
n-dimensional vector f such that the matrix

A=A+ [f Onxn-1) 9

is Hurwitz. Then, filter the signals y and w» through two
n-dimensional prefilters

(10)
an

As a result of this prefiltering operation, the state variable «
for the system (la) and (1b) satisfies the following algebraic
equation in terms of 7 and A:

n(0) =0
A(0) = 0.

n=Am+eny;
A= A+ ey

n—1 n—1
=0 =0

where A’)} is the sth power of Ay, and e satisfies the linear

differential equation
¢ =Ayze;  €(0) = xo.

Since the matrix Ajf is stable, the term e goes to zero
exponentially fast as ¢ — oo. Ignoring this exponentiaily
decaying term, we have

n—1 n—1
y=—3 (fi+a)ei A+ bief A4
=0 1=0

Hence, the parameter vectors o and b can be identified from
the above equality using the standard LS method.

Although the Kreisselmeier observer provides a method to
solve the SISO continuous-time identification problem, the
choice of the vector f is still quite arbitrary apart from the
requirement that A; be stable, and it does not address any
optimality property of the resulting identification scheme, nor
its robustness to inaccuracies in modeling.

In the next section, we study the worst-case identification
problem formulated in Section II. A byproduct of this analysis
will be a verification of the fact that the Kreisselmeier observer
structure with the parameters f fixed at certain “‘optimal”
values is part of a minimax identifier.

1V. WORST-CASE IDENTIFICATION

To apply the general framework of affine quadratic minimax
controller design [5], [6] to the problem at hand, we first
associate with (3a) and (3b) the natural simple dynamics

§=0.

In terms of £ := (¢, z), the system is now described by the
following dynamic equations:

‘ 0r><r 05 xn Or n
&= YA +uAre AZ}é—*—[ IX }w

= AE+Dw;  £0)=&:=[0 x] (12
y =[01x, €j)+ev

=:C¢ + ev. (13)
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The soft-constrained game cost function, J, can similarly be
expressed as follows, in terms of the state variable &:

g» §o, w [0,00)> V[0, oo)) =
[ - € - PP + P &

- |§0 —50[50 (14)
where
I — Q Orxn . A . QO Orxn
Q - \:Onxr Oan]’ QO o [Onxr PO :l
e (0] & _ [0
B

and # denotes an estimate for the state variable z, and 6
denotes an estimate for 6.

For the minimax problem (12)—(14), we introduce the cost-
to-come function [6]-[9]

W’Y(t) 5, é[O,t]v Ylo, ¢

max

s U0, 1]) =

o, wio, 11> V[0, 1] [¥[0, 11> u[0, ], §(2)=§

t R 1 o
[ =2 (i + Z 1w -0ep) |
=160 — &l (1s)

where the max operation is over all initial conditions &, and
disturbance trajectories wig ¢ which, along with the input
history wjo, ¢, generate the output yjg ;) and ensure that the
terminal state satisfies the boundary condition £(t) = &.
Using dynamic programming, this cost-to-come function can
be rewritten in the simpler quadratic form

W, (t, & €po,4, Yo, 4, wo,4) = —m(E 7, Yo, 4> Yo, )

- 72l§(t) (t)lz(t V2 Yl0, ¢ %o, 4]) (16)
where
S- sA-AT-sp0s+ioo-Llg
€ 7y

$(0) =T, a7
R 1 1 —y 1 1 — N
E=AE+ 5T Cy-06+ 57 QE-4)

£(0) =¢, (18)

2 — — ~
=L ly-CeP-E-é% mo)=0 (9

and A, C, and D were defined through (12) and (13). Note that
> satisfies a generalized Riccati differential equation (GRDE).
Now, partitioning this matrix as

== |5 7]

25 S (20)

where ¥; is an r X r-dimensional symmetric matrix, and
substituting. this structure into the forward GRDE (17), we
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arrive at the following coupled differential equations for ¥,
22, and 232

. 1
Y =-20A4; — A’12’2 — 222/2 - ? Q; 21(0) = Qo (21a)
2 =—%yd4; — A1D5 — 5y85; 82(0) = Opxn (21b)
1
=—Y345 — AZEg — Y333 + 61817 23(0) =
2lc)

where A1 := Aj1y + Ajou. Note that the last differential
equation is decoupled from the first two. By standard results
on Riccati equations, the matrix ¥3(¢) is positive definite for
all ¢ > 0. Let us further introduce the following two matrices:

@ =375, (22)
=3 - 5Y5 8. (23)

It is straightforward to show that ® and = satisfy the following
matrix differential equations:

. 1
d = (A2 - g 23_16163) D~ Al,' @(O) = Onxr (24)

a4 1 =
E=5 B'ere)® — o Q; Z(0) = Qo. (25)
The cost-to-come function W, (%, &, 5[0, > Y[o,4)» Yo, 4) 1

nonpositive if 5 is chosen to be equal to E and if, furthermore,
the matrix Y(t) is nonnegative definite for all + > 0 and all
possible measurement waveforms yjo, o). Hence, we have the
following result.

Theorem 4.1: For the worst-case identification problem de-
scribed by (3a)—(7), we have the following for each fixed
e > 0.

1) The optimal performance level v

*

is given by
4" =inf {y > 0: the solution to (25), =, (%),
is nonnegative definite for all ¢ > 0 and for
all possible measurement waveforms yo, o) }. (26)
2) For each v > +*, the matrix Z,(¢) is positive definite
for all £ > 0 and all possible measurement waveforms

Y[0, 00)> and an identifier that achieves the performance
level v is given by

§w(t7 Yio,¢]» Yo, t) - [ rXT vorxn]é (27
Po—e 1 27t —E719 — =2
E-Bir 5| G gt ey | C=09
£0) =& (28)

Furthermore, if in addition the following persistency of
excitation condition:

t
tlim )\min (/ @’81 6’1<D dS) =00
— 00 0

holds (where Ap;,(X) is the minimum eigenvalue of
the symmetric matrix X) and the disturbance quadru-
ple (20, 0, w0, 00)s Vjo,o0)) belongs to L2, then the
parameter estimates converge to the true value, i.e.,
limg—eo 65(t; Y0, 47> U, 1) = 0.

(29)
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Proof: We first note that the inequality

inf sup T,(&; 6o, w V[0, 00)) <0
€10, 00) €05 W0, 00> V[0, o0)
is equivalent to the one
inf sup J: (6 £07 [0, Yo, t) <0
€10, 4 €0,Wio, ¢)> V[0, 1]
forall t>0
where
£ 507 U[O t])

/Hfél )P + O] bt~ 27l — Eol

For each fixed t > 0, the second inf-sup problem can be
rewritten as follows:

inf sup J:
E[D,z] 507w[o‘t]:U[0,c]
= inf sup sup ny
£0,0 Yo, ,€ €0, W0, o> ¥lo, 41l Ui, 1120, 11, (1)=E
= inf sup W,(t, & £, 4 Wio, 1 Vio,4))-
0,4 Y0,1¢

The second equality holds since the estimate é depends only
on the measurement waveform y|o, -

Now, for a fixed v > 0, it is necessary to have b))
nonnegative definite for the existence of an identifier that
achieves the performance level -, since if 3 has any negative
eigenvalues then W., can be made arbitrarily large positive by
an appropriate choice of the uncertainty. Because of the struc-
ture (20) for ¥ and the positive-definiteness of its subblock
matrix Xg, it is further necessary to have Z. be nonnegative
definite.

Now, fix a v that is strictly larger that the right-hand side
(RHS) of (26). Note that

_ 1 1 t
“%“”(7%“?)/0 Qds

for any +; less than -y and larger than ~*. This, coupled with
the fact that Z,(0) > 0, implies that Z(¢) > 0. This further
implies that E(t; ) > 0. The identifiers (27) and (28) are well
defined for this value of . Substituting this identifier into the
system, i.e., picking £ = £, leads to the following inequality:

2y (t) =

sup W"{(t7 57 é[U,t]v Wo, t]»

v10,4) <0
y[o,t]:f

for any ¢ > 0. Hence, the identifier achieves the performance
level v
So far we have shown statement (1) and that the identifier
(27) and (28) achieves the desired performance level v > v*.
To prove the convergence of the parameter estimates, we note
the following equality:
2 2 i
E,(t) = L2, (8) + ( 7—12> / d'ere] d ds
o Y 0
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for any 1 € (7*, ), t > 0 and any measurement waveform
Y[0,00)- This implies that under the persistency of excitation
condition (29)

tlim Amin[Z4({t)] = 00
‘We now note the following identity from (15) and (16):
60— Eol3 =) €M, ,

+/
0

— |w|2 _

e -5 +w-DEE -

2
]ds

When the quadruple (2o, ¢, w0, c0)s V[0, m)) belongs to L2,
the above equality implies that |£(t) — £(t)|2 ) is uniformly
bounded for t € [0, 00) which further implies that |6 —

6412 (¢ is uniformly bounded for ¢ & [0, o0). This, coupled
with the unboundedness of =,(t), leads to the convergence of
the parameter estimates 6 (t). O

Remark 4.1: Although Theorem 4.1 provides an implicit
characterization for ~*, this optimal performance level is
difficult to evaluate for a general cost matrix Q. To check
whether a given v > 0 is larger than 4* or not, one needs to
show that the matrix function Z-(£; yjo, 4, u[o,4) is positive
definite for all possible measurement waveforms yio 4 and
t > 0. This validation procedure is almost impossible to carry
out in general. There are some special choices of ), however,
for which v* can be determined explicitly. One such choice is

vl* +

v+25@—@

1
Q(t, Ypo, s Yo, 1) = = 'eie) @
in which case v* = 1. Hence, this stands out as a natural
choice for the error weighting matrix.
Another choice for the cost matrix @ of special interest is

Q(t, Yo, 4, upo, ) = EQPE

where @ p is a positive definite constant matrix. This choice of
(Q weights the identification error heavily when the confidence
level in the parameter estimates (Z) is high, but weights it
lightly when the confidence level is low. For this choice, the
matrix = is uniformly bounded from above when the underly-
ing system is stable which means that the identification gain
does not converge to zero. Thus, whenever there is sufficient
excitation in the system, we are guaranteed an exponential rate
of convergence for the parameter estimates without covariance
resetting. To compute the optimal performance level that is
associated with this choice of the cost matrix, we observe that
the worst-case covariance matrix =1 satisfies the following
dynamics:

=14

_ — 1
—(C‘; 1):—: 162‘1)611 =

1
7 ?QP~

Hence, the matrix 21 increases at most linearly in time when
the system does not have excitation. Consequently, the matrix
= exists on [0, co) for any value of v > 0. The optimal
performance level for this choice of @ is therefore zero.
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The two choices above for the cost matrix ¢ lead to pre-
cisely computable optimal performance levels for the worst-
case identification problem. Obviously, any linear combination
of these two choices will also lead to a well-defined and
computable optimal performance level. Through simulations,
we have observed that indeed such a combination of the two
choices above leads to an identifier that performs the best. ¢

Simplification of the Identifier (27) and (28): The identifier
structure (27) and (28) can be simplified considerably if the
matrix Py is chosen in such a way that makes Y3 time
invariant. We note that the matrix Ay — (1/62)2:;1616/1 is
of the form A introduced by (9) which is the system matrix
for the Kreisselmeier observer. In the time-invariant case, the
evaluation of the matrix function ¥(¢) can be reduced to the
evaluation of a 2n-dimensional vector differential equation.
By straightforward algebraic manipulations, we obtain the
following simplified form of the worst-case identifier (27) and
(28):

AQH + HA% + I— 12 H6161H =0 (30)
€
1 /
Agoi=Ay — -63116161 31
n=Azn—ery; 1(0)= Onx1 (32)
A=Apd —eru; M0) = 0y (33)
o=[n Apn - ArnlAn
HA AN e AN AL G
d —=—1 ——1 1 / 1 ——1
E<: y=-E (6—2(136163(1)‘;-2—@):
2710)=Q5" (35)
8(t, Yo, 1, upo,q) = 6(t) (36)
A . _
b=—3¢E Lo'e(y — efa); 6(0) = b (37
:i’ =A% + (yAll + uAlg)é
1 o N R _
+ 6_2(11 +®E1® ey (y —e1d);  £(0) = To. (38)

The observation made above is put into precise terms in the
following corollary.

Corollary 4.1: Consider the worst-case identification prob-
lem described by (3a)—(7), and let the initial condition Py be
chosen as 117}, where II is the solution to the ARE (30). Then:

1) The optimal performance level ¥* is given by

~* = inf {y > 0: the solution to (35), E;l(t),
is positive definite for all £ > 0 and all

possible measurement waveforms yo, oc) }- (39)

2) For each v > «*, the identifier defined by (30)—(38)
achieves the desired performance level . Furthermore,
if the persistency of excitation condition (29) is satisfied
and the uncertainty quadruple (zo, 0, W0, 00)» v[o’m))
belongs to £2, then the parameter estimates converge to
the true value, i.e., lim;_ o0 O(t) = 6. o
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A comparison of the identifier (30)—(38) with that based on
the Kreisselmeier observer shows that the minimax identifier
(30)—(38) admits a Kreisselmeier observer structure. The pa-
rameter vector f for the Kreisselmeier observer is fixed at an
“optimal” value (1/€*)IIe; which is further independent of the
desired performance level v > 0. Hence, as a byproduct of this
study on the worst-case identification problem, we obtain a set
of “optimal” parameter values for the Kreisselmeier observer.
On the other hand, the identifier (30)—(38) is substantially
different from Kreisselmeier observer-based identifiers in the
sense that it contains additional filter dynamics for the state
variable = of the unknown plant which is coupled with the
dynamics of f in a nontrivial way. A detailed comparison of
the performances for these two identification schemes on an
illustrative example is included in Section VI. Note that the
filters (32) [respectively, (33)] for y (respectively, u), serve
the same purpose as (10) [respectively, (11)]. Here, we have
designed them to filter ey y (respectively, eju) instead of e,y
(respectively, e,u) to avoid the multiplication of the matrix
Ay, in the reconstruction of the matrix ®. Another remark is
that when the parameter € > 0 is small, which corresponds to
the case of weak measurement noise, the matrix Ay, includes
terms of O(1/€) whose implication is discussed next.

Reduced-Order Identifier for 0 < € < 1: Consider the spe-
cial case when the intensity of the measurement noise is
very low which is formally captured by letting ¢ <« 1.
As ¢ decreases to zero, the computation of the identifier
(30)—(38), as well as the on-line computation of the parameter
estimates, becomes numerically ill-conditioned. To alleviate
this numerical stiffness problem, we will pursue a singular
perturbation analysis to obtain an “approximate” identifier for
(30)-(38) for sufficiently small values of e.

For ease of reference to the reader, we introduce below
the complete set of dynamics for the approximate (reduced-
order) identifier, followed by the arguments that lead to it.
First, we define a 1 x (n — 1)-dimensional matrix A, and an
(n — 1) x (n — 1)-dimensional matrix A by the following
partitioning of the matrix Aj:

Ag::[ 0

A21]'
O(n—1)x1

Ag

Using these two matrices, the approximate identifier can be
written in the following form:

Agolls + HSAIQQ - HSA’QlAngs +1,-1=0 (40)
Afs = A22 — HSAI21A21 (41)
s :Afsns + HSA/21y§ "75(0) =0 42)
Ao = A de + T Abu; A(0) = 0 (43)

?, = [775 A;slns : AJ::+1775]A11
T AT e AFTPIAJA (44)

d
=) = (@ — e
’ 1 —=—1

. (A21<D5 - 61141) — :YE Q :.S (45)
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8s(t, Yjo, 1, upo, ) = b5 (46)
2 . 1 N . -
05 :‘“:sl(q)/s 51— Allel)’g(y_ellxs)S 85(0) = o
@7)

) . 1
Ts —A103+A2xs+ I:HSA/21+®SES_1(®;A,21 —Allel):'

1 . . —
~(y—€id); 2.(0) = o, 48)

The ARE (30) is of the standard singularly perturbed form
with respect to the parameter €. Thus, its solution II can be
shown to admit the following approximation [11]:

e+ O(e?)

1= €A21Hs + 0(62)
T |ellg Ay + O(e?)

Hs + O(é)

where 1lI; is the solution to ARE (40). Given the above
equality, the matrix Ay, can be expressed as

1
-+ O(l) Aoy
Ago = i €
— A% +0(1) Ao

This specific structure allows a time-scale decomposition of
the filters (32) and (33). For (32), first introduce the state
transformation 7 = (eny, ,)’; then the filter is described in
the standard singularly perturbed form with the state variables
(nf, n.). The slow dynamics for (32) [respectively, (33)] are
exactly (42) [respectively, (43)]. Some further straightforward
algebraic manipulations on the identifier (30)—(38) lead to the
approximate identifier (40)—(48), after neglecting fast filter
variables and higher-order terms of e.

The optimality of the approximate identifier (40)-(48) is
established in the following theorem.

Theorem 4.2: Consider the worst-case identification prob-
lem described by (3a)—(7). Let the initial condition P, be
chosen as II~%, where I1 is the unique positive definite solution
to the ARE (30). The reduced-order identifier §, given by
(40)~(48) achieves the desired performance level v > 0, if
the following GRDE admits a nonnegative definite solution

Y(t; 7, Yjo,4» ujo,¢) on t > 0 for any measurement waveform

N A —t A 1 — P PN
S=-SA-A%- ?Q—E(DD/-FHH')E
_ %STI’E _ %6?2 $0)=Qy, @9
where
ES (@AY, — Afer)
H .= -1 (50)

—1I A% + (I)sEs_l( fer — ®LAY)

Proof: Introduce &, := (6., 2.) and & = & — &,. It is
then straightforward to obtain the following dynamic equation
for &;:
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Under the reduced-order identifier (40)—(48), the cost function
(7) can be rewritten as

Ji("”Ov 97 Wlo, o0) U[O,oo))
= ']’Y<6S7 o, 0, Wio, c0)» V[0, oo))

= [ =2 + P e = OV,

By an argument similar to that used in the proof of Theorem
4.1, proving the validity of the bound

sup
20,8, W0, s0)> V[0, 0o)

Js(zOv 07 W[0, ) U[O,oo)) < 0

is equivalent to showing that
W2(t, €, vi0,4» Yo, 1) = sup o
z0, 8, wio, 41Y[0, 4], 2o, +1,& (t) =€

[ = (1ot + Sty - 2+ T8 | as
— 7€), <0

for all £ > 0 and any measurement waveform yg 4.

By a “completion of squares” argument, the function
We(t, €, Yo, 1]» U[o,#)) can be shown to be less than or equal
to —'}/2[5(1?)[22 W This completes the proof of the theorem. (]

Checking the nonnegative definiteness of 3 in advance for
all possible measurement waveforms may not be possible. We
observe, however, the following useful relationship between
$'C and H, where ¥ is the solution of the GRDE (17)
with Py = IL

T = H + 0(e).

Hence, roughly speaking, the matrix function ¥ approximates
¥ for sufficiently small values of e. This, in fact, holds for a
wide class of measurement waveforms, as to be determined
shortly.

Motivated by the results of [5], we introduce the following
set of measurement waveforms and corresponding disturbance
set to formally characterize the closeness of performances
for the full-order identifier (30)-(38) and the approximate
(reduced-order) identifier (40)—(48).

LBPpw (L, M, 5, Tr,, K): This is the set of all wave-
forms y[o, o) that satisfy the following four conditions for
some positive constants L, M, p, T, and integer K.

1) There exist K < oo time instances 0 < ¢t < -+ <

tx < oo, such that
min ty —tk1 > T
ke{1,-,K}
2) [[Au[y(®) — y(®)] + Arzlu(t) = w2 < L' — ¢,
Y, t €0, t], or VU, t € [tr, ther], k=1, -+, K —
1, or V', t € [tg, 00).
3) HAle < M for all ¢ > 0.
4) E(t) > (t+ 1)pl, forall t > 0.
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W[LBPQPW(L, M, 5, T, K)]: This is the set of all
disturbance quadruples (zo, 0, wip, o), V[0, 00)) that lead to
a measurement waveform ypp o) that belongs to the set
LBPepw (L, M, B, Trn, K).

In terms of this notation, we can now state and prove the
following result.

Corollary 4.2: Consider the SISO system (3a) and (3b)
with the game cost function (7) indexed by ~. Let the initial
cost matrix Py be chosen as I~ !, where II is the positive
definite solution to the ARE (30). For any v > ~*, where
~v* is defined by (39) and any disturbance within the set
WILBP g pw (L, M, 7, Ty, K)], the reduced-order identifier
bs given by (40)—(48) achieves the disturbance attenuation
level « for sufficiently small € > 0, i.e.,

sup
(a:O,O,w[O,oo),v[oym))EW[ﬁBPgPW(L,M,_ﬁ,Tm,K)]

Jy(bs5 0, 8, Wi, o), V[0, 00)) = 0. (51)

Furthermore, if (o, 6, W, 00); V0,00)) € WILBPEpw
(L, M, p, Tpy, K)]( L2, then the parameter estimates 6, (¢)
converge to the true value § as ¢ — oo for sufficiently small
values of e.

Proof: Since there are at most K discontinuities in the
measurement waveform yjp 4, it is sufficient to prove the
theorem for the case when K = 0.

To study the solution to GRDE (49) more closely, partition

the matrix 3 as
LR 5
= [2 EJ

where ¥, is an r X r-dimensional symmetric matrix. Introduce

further the notation

1. A .

Sy = [;Z:n 5}32 718 = {62221}
Y3 s 2

=3 - 55515,

where ﬁgl is a scalar and 221 is a 1 x r-dimensional matrix.

Using a “Lyapunov function” approach similar to that used
in the proof of [5, Th. 5.5], one can establish validity of the
following approximations:

Sa =1+ O(e%); Sap= —Agy + O(e)
233 :Hs_l + O(e), §)21 = AZl@s — 6/1141 + 0(6)
Sae =@, + O(e);  E(t) = E(t) + (£ +1)0(e)

on the entire time interval [0, 0o).

Then, the existence and nonnegative-definiteness of
the matrix ¥ follow on [0, co) for sufficiently small e
which further implies that the reduced-order identifier
achieves the disturbance attenuation level v on the set
of disturbances W([LBPppw (L, M, 5, Tpn, K)]. Since
limy_, e )\min[é(t)] = oo and

O, =160k, + [ [3 €12 + lw — DR

1 G

e T

+ (v —

= |wf* ~ W} ds
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the parameter estimates 0,(¢) must converge to 6 as t — oo.
This completes the proof of the corollary. OJ
Remark 4.2: Although the reduced-order identifier

(40)—(48) is only two-integrator simpler in structure than the

identifier (30)-(38), it avoids an interconnection between a

fast dynamics and a nonlinear dynamics. Thus, the reduced-

order identifier is expected to be numerically well conditioned
for small values of ¢.- This observation is corroborated by the
example presented in Section VI, where the total simulation

time for a system using the reduced-order identifier (40)—(48)

was found to be at least one-third shorter than that needed

for the identifier (30)—(38).

The reduced-order worst-case identifier requires [(n + m +
1)(n + m)/2] + 4n + m — 2 integrators in its structure,
while the conventional identifier requires [(n + m + 1)(n +
m)/2] + 3n + m integrators, with the difference being n — 2;
hence in this sense the former is inferior to the latter. On the
other hand, the reduced-order identifier exhibits much beiter
performance against nonzero initial conditions, a wide range
of unknown parameter values and nonstochastic disturbance
inputs, as to be demonstrated in the context of a simulation
example in Section VI. In addition, the reduced-order worst-
case identifier ensures satisfaction of a disturbance attenuation
bound. There is cleatly a tradeoff between robust performance
and computational complexity, and since the difference in
complexity between the two identifiers is only linear in n, the
reduced-order worst-case identifier stands out as the winner in
this comparison. o

V. EXTENSION TO THE MIMO CASE

We now turn to study the worst-case identification problem
for MIMO linear systems. The plant is known to have p
inputs, m outputs, and a set of fixed observability indexes
{n1, -+, nm}. Hence, it is n := 7" n; dimensional. We
assume that the plant is controllable and observable and that
the outputs are linearly independent, i.e., there is no m-
dimensional nonzero vector k such that &'y is identically zero
for any £? control input signal. By the results of [3], this class
of plants can be described by the following state space model:

& =Asx + Fy + Bu (52)
y=Cz+ Gy (53)
where
Az =block diagonal {4, ... A{™}
i O, — I, _ .
AW = |- mimt i=1,-,m

2 0 015 (n;~1) o

F=[f0 ... f(m)]; B=[p" ... b(P)]

C =block diagonal {C™), ... ¢(™)}

c® =1 On,—1yx1l; G = [gW - g(™)]
and the matrix G is further strictly lower triangular.-

Since our interest is in obtaining a parameter identifier that
is robust with respect to exogenous noise and disturbances
which do not necessarily admit stochastic descriptions, we let
the plant dynamics be perturbed by additive noise w and the



PAN AND BASAR: PARAMETER IDENTIFICATION FOR UNCERTAIN LINEAR SYSTEMS

measurement y be “contaminated” by measurement noise Fv,
where the matrix E' is taken to be

E := diagonal {e1, -+, €}

and ¢;, ¢ = 1, - -+, m are positive scalars. Hence, we consider
the following general model:

m Y4
T = Asx + Z ylAgzl) + ZuiAm 01 + w; IL‘(O) = I
i=1 i=1
(54)
m
y=Cx + Z in(i)Gz + Ev (55)
i=1
where 0 is an r;-dimensional unknown constant parameter;
02 is an 3 := 7—r;-dimensional unknown constant parameter;
A(l’l), i =1,---,m and Ag?, i = 1,.--, p are known
constant matrices of dimensions n x ry; Ao, C, and £ are
as defined above; w is the n-dimensional system noise; and v
is an m-dimensional measurement noise. The matrices G(*),

1 =1, ---, m further satisfy the following property due to the
strict lower triangular structure of G:
(@)
G
G® = : i=1,---,m
()
)
Gl =0ixry; 12, i=1,,m j=1,-,m

where the subblock matrices GE;)) are of dimensions 1 x 7o,
i=1,-,mj=1--,m.

Denote the unknown parameters (67, 65)" by 6. The objec-
tive is again to determine an estimate 6 for # using a policy
(4) that minimizes the performance index (5). The optimum
performance level is again denoted by v* as in (6).

As in the SISO case, we transform the problem to one
where the general framework of affine quadratic minimax
controller design is applicable. This is done by associating
the natural dynamics § = 0 with the system (54) and (55)
and by following an analysis similar to that in the SISO case.
This leads to the counterpart of Theorem 4.1 which is stated
below as Theorem 5.1, after introducing the expressions for
the full-order identifier

S = — ApYs — Ngdy — B35 + C(EE')'C
23(0) :PCI
Ao =4y — X3 C/(BE)'C

(56)
(57

m
=450+ [-AY) $3C(EE)TIGDy,

=1

P .
+ 3040 OurJui; @(0) = Onxr (58)
=1

(39)

@

(60)

= |'0m><n > uG®
i=1
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8(t, Yo, 4, ujo,4) = 0(t) (61)
h=="Y(C — 'C")(EE") Yy - Cb — C3)
6(0) =7, (62)
§ =AMk + A0+ [0E"HQ'C -G )+ 251
(BE) ' (y-Gh-C2); 2(0)=170 (63)
m 14
Ay = Z yz‘A%) + Z UiAgiz) Onxry | - (64)
=1 =1

Theorem 5.1: Consider the worst-case identification prob-
lem for the MIMO linear system (54) and (55) with the cost
function (5), and let the optimal performance level v* be
defined as in (6). Then, we have the following.

1) The optimal performance level v* is given by

¥* = inf {y > 0: the solution to (59), (¢},
is nonnegative definite for all £ > 0 and all
possible measurement waveforms o, .0) }- (65)

2) For each v > +*, the matrix 2, (¢) is positive definite
for all £ > 0 and all possible measurement waveforms
Y[0,00)» and the identifier (56)~(64) achieves the de-
sired performance level . Furthermore, if the following
persistency of excitation condition:

t
lim Amin [/ (®'C’ —
t—o0 0

GYEE) ' (C® -G) ds] =00
(66)

holds, and the disturbance quadruple - (zg, 6,
W0, 005 V[0, 00)) Delongs to £?, then the parameter
estimates converge to the true parameter value, i.e.,
limy00 O(t) = 0.
Proof: The theorem can be proved by following steps
similar to those used in the proof of Theorem 4.1. O
Simplification of the Identifier (56)—(64): The identifier
structure (56)—(64) can be simplified by a proper choice of
the initial weighting matrix Fp, to result in a time-invariant
Y3, and by further utilizing the block diagonal structure of the

“system matrices. Toward this end, we introduce the following

notation:

(A% ]

(i)
Aim
e

12(1)

—A ?Z)(m) 4
where the subblock matrices A(l’l)(j) an Agzg)(].) are of dimen-
sions nj; Xxry, ¢ =1,---,m,j=1,.--m.

In terms of this notation, and using some additional straight-
forward algebraic manipulations, we arrive at the following
simplified form of the identifier (56)~(64):

AP IO AP 1 1, IO O = o

i=1,-,m (67)
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AY) = A0 —%H“)C(")'C@; i=1,---,m (68)
= 77((1]) A(J n(l) W’ i 778))( )=0
1717 e, M ]—1,"'?’177/ (69)
d3G) _ 4D30) _ ) e A9(0) =
Z A = AT — 0P s A(i)(O)_o
@ N @) 4076 (0
W = gy Ay, uG o A )]
Jj=1
) _ (Z) Y i) )
[Alm c'G)
) 6\ " )
YOG AR A AR AG)
j=1
ADy Ousn)s i=1m ()
d o1y _ o N Ligoo _ g
F(E)=-% {; g[q’ =G
[COa) — G<)]——Q}
2710) =@, (72)
z7’—(2) = lerl ZGEf))yg joi=1,-,m (73)
j=1
8(t, Yjo, 0, upo,s) = 0(t) (74)
io =15 Ligoow _ @
- Z 2 { ()]
i=1
m — . ~ —
: [w—Z Gl - 0%}; 6(0) =6, (75)
=1
&M m o
Jé’:zlé‘f'AQj?‘f' E_lz -
Plm) =1 G
(@' 0~ Gy — Gy — CDi]
1 .
2 IOCW [y, — Gpyyb — CD3]
+ :
1 P X
= M) [y, — Gy — O™ 1]
#(0) =7o. (76)

This leads to the following counterpart of Corollary 4.1.

Corollary 5.1: Consider the worst-case identification prob-
lem for the MIMO linear system (54) and (55) with the cost
function (5), and let the optimal performance level v* be
defined as in (6). Assume that the initial weighting matrix
Py is chosen as

Py = block diagonal {IIV ", ... (™™}
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where 11(9, z = 1, ---, m are the unique positive-definite
solutions to the ARE’s (67). Then:
1) The optimal performance level v* is given by

v* = inf {y > 0: the solution to (72), E~*(¢),
is positive definite for all ¢ > 0-and all

possible measurement waveforms yjo, o) }-  (77)

2) For each v > «*, the identifier (67)—(76) achieves
the desired performance level «y. Furthermore, if the
following persistency of excitation condition:

2B, Amin { f al

. [C(i)q)(i) — 5(1.)] ds} =00

@(2) c®' _ G< )]

(78)

holds, and the disturbance quadruple (=, 0,

W0, c0)s ’U[o,oo)) belongs to L2, then the parameter
estimates converge to the true parameter value, i.e.,

limi oo 9(75) =4. o
Approximate Identifier for 0 < e < 1: When the intensity
of the measurement noise is weak, which can be formally
captured by letting € := max {e1, -+ -, €, } < 1, the identifier
(67)—(76) becomes numerically ill-conditioned for computa-
tion. To alleviate this numerical stiffness problem, we again
seek an approximate identifier for sufficiently small values of
e which is numerically better conditioned than the identifier

(67)~(76). Because of the O(l/eiz) terms on the RHS of (71),
(4)

it.is numerically stable to evaluate the filtration of Au(i)yj
and (1/63)2&010(1)/638))9 i =1,---,m,j = 1,---,m

separately. Thus, the approximate filter may not contain fewer
integrators than the identifier (67)—(76).

Let us define a 1 x (n; — 1)-dimensional matrix A%) and an
(n; — 1) x (n; — 1)-dimensional matrix Agz) by the following
partitioning of the matrix A(i), 1=1, -, m

@ _ 0 AR
A l:o(n 1)x1 Ag2)i|

Using these matrices, the approximate identifier can be written
in the following form:

A 19 A+ 1,y — DA AP 0

A(i) ;:A(i)—H(i)A(i),Aéil); i=1,---,m (80)
d i

45— a9) (J))+H()A21 i
e R
d @) _ 40 u (i),
590 = A5 w) + H(z)A [yz CMuwiil
ngfi(o)zo z‘:1,~~,m-1 J:Z+17"':m (82)

s(i
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,\(]))(0) i=1,--,p j=1--,m (83)
m
() — @ @7 @) 4@ 6) 1 40)
¢ = Zl[ s(7) Ats Msi) + Ay ns(J)]All(Z)
i=
) (7,0 OO
+ z [’\s(g) A )\S(]) e Afs )\5(])]
Agjz)(l coi=1,---,m (34)
WL liel s e
7=1
d =)= = 3050 _ 1 4=
- T TF [Z R
571(0) — 0 -1 (86)
-(I)(i)lA(i)/ 1/
iy’ (7)
39 -c® ZA 1% ZAI?(L i
1 @) ~@)!
ol e ) ZG@) Yi
| i=1 i
i=1,-,m (87
bs(t, Ylo,1, U ) é (t) (88)
. 1 e (@) 1 N () 4
bo=-E7 3B -y G - 0V,
=1 * i=1
8.(0) =8, (89)
Q(l) m
Tibo+ i+ | ¢ |2 8L
lIl(m) =1 &

g = Goybs — C92,]
1 1 .
=y = Gy — 0Dz,
[Hgl)A(le) ] o [v1 e ]
+ :
1 Goof. — g
H(m)A(m) [ Ym — Gmyls — O]

%o (90)
Homl} <Z>}, i=1, .-, m.

To state the counterpart of Corollary 4.2, we introduce the
following set of measurement waveforms.

LBP4pw (L, M, B, T, K): This is the set of all wave-
forms o, .c) that satisfy the following four conditions for
some positive constants L, M, 7, T,,, and integer K.

1) There exist K < oo time instances 0 < ¢; < «-- <
txg < oo, such that

lI

on

| |

min  tg —tp—1 > T

ke{l,, K}
2) 150, Aty — w®)] + Yo, ARw() -
wil)llle < LIt ~tf, and | 27, GO [ () — i (@] |2 <

1305

1k e U g P

o

1
ha

parameter estimates

|
@
T

,e— = -

—4 ’. 4

_5 . . " . : P
0 10 20 30 40 50 60 70 80 90 100
(a)
1 T . v  E—
# .
i A - N b ‘. ~ -

oA e
-1f ' J
—2F 4

]
[
T
L

state estimation error
A

9 L L L — L L P

0 10 20 30 40 50 60 70 80 90 100

(b)
Fig. 1. Response of the full-order identifier without any disturbances and

with no discrepancy between initial states and their estimates: (a) parameter
estimates 6 and (b) state estimation errors * — .

th/ — tl Vt/,t S [O, tl], or Vt,,t S [tk, tk+1],
k=1,---, K — 1,oth’,tE[tK, 00).
3 IS 4Dy + T ALl
(DK G(Z)yl(t)nz <M for all ¢ > 0.
4) E(t) > (t+1)pl, for all t > 0.
WILBPEpw (L, M, 5, Trn, K)]: This is the set of all
disturbance quadruples (zo, 0, Wi, «), V{0, )) that lead to
a measurement waveform 1y o that belongs to the set
‘CB/PEPW(Lv M7 D Tma K)

Corollary 5.2: Consider the worst-case identification prob-
lem for the MIMO linear system (54) and (55) with the cost
function (5), and let the optimal performance level v* be
defined as in (6). Assume that the initial weighting matrix
P, is chosen as

< M and

Py = block diagonal {ITV ", ... TI(™ "}

where I, ¢ = 1, ..., m are the unique positive-definite
solutions of the ARE’s (67). For any v > %, where
~* is defined by (77) and any disturbance within the set

WILBPppw (L, M, B, T, K)], the approximate identifier
b given by (79)—(91) achieves the disturbance attenuation



1306

I
-

parameter estimates
N
T

o

-5 n L . L L L L L L

0 10 20 30 40 50 60 70 80 80 100

state estimation error
IN
T
L

9 L L . L . L . L L
o 10 20 30 40 50 60 70 80 90 100

(b)

Fig. 2. Response of the reduced-order identifier without any disturbances and
with no discrepancy between initial states and their estimates: (a) parameter
estimates ¢ and (b) state estimation errors x — 2.

level v for sufficiently small ¢ > 0, i.e.,
sup
(#0,8,W[0, 00)s9[0, 00) JEW[LBPE 1y (L, M5, T, K )]

: J'y(53§ zg, 0, W0, 00)>» ’U[O,oo)) =0. 92)

Furthermore, if (2o, 0, (o, 00), V0, 00)) € WILBPRpy
(L, M, 3, T, K)]( £?, then the parameter estimates 6, (¢)
converge to the true parameter value 6 as ¢ — oo for
sufficiently small e. o

VI. AN EXAMPLE

To illustrate the results obtained in the previous sections,
and particularly Section IV, we will now consider a third-order
dynamic system with five unknown parameters

bls + bo
s3 +as® + arst +ag

H(s) = (93)

Let

6= l-—az —a1 —ag bl bO]/

where the true value of the parameter vector 4 is fixed at
f=[-2 -1

-3 -4 1
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(®)

Fig. 3. Response of the conventional identifier without any disturbances and
with no discrepancy between initial states and their estimates: (a) parameter
estimates § and (b) state estimation erfors & — .

In the form of state-space representation (3a) and (3b), the
system can be equivalently written as

0 1 0
=10 0 1|z+ (yA11 + ’U,Alz)g +w (94)
0 0 0
y=[1 0 Olz+ev (95)
where
01 0
Ay=10 0 1
0 0 0

0 0
Ann =[Is Osx2]; A1z = [ bxs Blxzy
O2x3  Ip

The cost function associated with this system is given by
(5) with

3
0o =0551; To= |0

0
Qo = 0.011;

and Py being the solution to ARE (30). The design parameter
¢ is taken to be 0.01, and the incremental weighting matrix
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Fig. 4. Response of the full-order identifier with exponentially decaying
disturbances: (a) parameter estimates 8 and (b) state estimation errors @ — &.

function Q(Z, ypo,+), U[o,4)) is chosen to be (1/e2)®'e1e} @,
as recommended in Remark 4.1 for the full-order identifier
(30)-(38) which implies that v* = 1. For the reduced-
order identifier (40)—(48), this matrix function is chosen to
be (@; /21 — A’lel)(A21®S — 6/1141).1

The desired performance level is fixed at v = 1.2 which
should be achievable by both the full-order and reduced-order
identifiers due to the choice of Q.

To compare the performances of these two identifiers (that
is, the full-order and reduced-order ones) with that of a
conventional one, we further design an identifier using the
Kreisselmeier observer of Section III with the parameter vec-
tor f = (=15, =75, —125)', or equivalently, a prefilter with
transfer function ‘

1
(s+5)3
For this Kreisselmeier observer, the initial covariance matrix
was set to be 10°]5, and for the comparison to be fair we have
not included any covariance resetting in the LS algorithm.

We now present a simulation-based comparison of the three

identifiers: full-order identifier (cf. Theorem 4.1), reduced-

IThis choice is made to avoid using additional integrators to generate ().
It is asymptotically equal to (1/e2)®’e €| ® as e — 0.

1307
T - r
@
8
<1
£
2
8
5 E
B
£
g ,
(=% ul\\
\
-2.5 Tl 4
-3 " T T e e —
-3.51 4
_4 N . L R R Oy P AU
0 50 100 150 200 250 300 350 400
(a)
15 ! - — - T T T
10F 1
2
s
k]
3
8
@
k=t
@ .
-10[ 4
15 . ) . . . . .
o 50 100 150 200 250 300 350 400
(b)

Fig. 5. Response of the reduced-order identifier with exponentially decaying
disturbances: (a) parameter estimates 6 and (b) state estimation errors  — z.

order identifier (cf. Theorem 4.2), and conventional identifier
(cf. Section III). The input signal u(t) was chosen to be

u(t) = 4sin (0.4t) + 2 sin (1.5¢) + 2 sin (4t)

for all simulations. The measurement noise v was set to
be identically zero in all the simulations, consistent with
our real objective, as stated in Section II. The robustness
property of the full-order and reduced-order identifiers holds
true even when there is measurement noise present. However,
the parameter estimates may be biased when v is taken as a
general £ signal.

First, we simulated the system with these three identifiers
in the absence of any disturbance input and with the initial
condition of the system set to be zg = (3, 0, 0)’ which is the
same as the initial estimate for it. The results are presented
in Figs. 1-3.

We observe . that the parameter estimates exhibit fast con-
vergence to their true values for all three identifiers. The
initial convergence rate is faster for the conventional identifier,
but it falls somewhat behind the full-order and reduced-order
identifiers in the long run.

Next, we simulated the system with the same three identi-
fiers against sizable initial deviations in the unmeasured state
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Fig. 6. Response of the conventional identifier with exponentially decaying
disturbances: (a) parameter estimates 6 and (b) state estimation errors z — &.

variables; namely, the initial condition ‘of the system was
fixed at zo = (3, 4, 8)" which is substantially different from
the initial state estimate To = (3, 0, 0)’. This initial bias in
the estimates of the unmeasured states can equivalently be
viewed as injecting exponentially decaying disturbances into
the system. The simulation results are depicted in Figs. 4-6.
The theory developed in the paper and the existing theory
on the Kreisselmeier observer predicts that the parameter
estimates should converge to their true values asymptotically
for all three identifiers. From the graphs, we see that the
convergence rate is much faster for the full-order and reduced-
order identifiers than for the conventional identifier. These
results clearly demonstrate the superior robustness property
of the worst-case parameter identifier over the Kreisselmeier
observer design.

While the theory developed in this paper only proves that
the estimates of the unknown parameters converge to their
true values under £2 disturbances with persistent excitation,
we have to emphasize that this is only a sufficient condition
for parameter convergence, and it is expected that similar
results hold even for more general disturbances. Indeed, it
has been observed through simulations that the parameter
estimates converge to their true values under white Gaussian
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Fig. 7. Response of the full-order identifier with band-limited white noise
disturbances: (a) parameter estimates 8 and (b) state estimation errors & — &.

noise. It is plausible that a rigorous proof can be devised for the
convergence of parameter estimates under some standard sto-
chastic assumptions [12], [13], in view of the well-established
connection between zero-sum differential games and the risk-
sensitive stochastic optimal control problem [14], but this has
not been carried out in this paper as the main concem here has
been the optimal attenuation of worst-case disturbance inputs.
As one example of a non-£2 disturbance, we simulated the
system. with the components of the disturbance w taken as
independent band-limited white noises, each with variance
0.01 and sample rate 1, and with the initial condition set
at z9 = (3,4, 8). The numerical results are depicted in
Figs. 7-9.

We observe that the parameter estimates for the full-order
and the reduced-order identifiers again converge to their true
values asymptotically. In this case also, the performances of
the worst-case identifiers are superior to that of the conven-
tional identifier.

Finally, we present a set of simulation results to demonstrate
the fact that the performance of the Kreisselmeier observer
depends very much on the choice of the parameter vector f.
In the previous simulations, to obtain improved performance
from the conventional identifier, we had chosen the poles of
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Fig. 8. Response of the reduced-order identifier with band-limited white

noise disturbances: (a) parameter estimates 6 and (b) state estimation errors
T - .

the prefilter which equivalently determine the vector f, to be
at —5, —5, and —5, based on the fact that the true system
admits a pole at —1.65. Let us now pretend that we are not
aware of this a priori information on the underlying system
(a realistic scenario) and design the Kreisselmeier observer
with the parameter vector f set at f = (-3, =3, —1)/, or
equivalently, a prefilter with transfer function

1

(s+1)3

For this Kreisselmeier observer, the initial covariance matrix:

and the initial state are set at exactly the same values as before,
that is 10%15 and (3, 4, 8)', respectively, and the disturbance
inputs are taken to be identically zero. The results obtained
are presented in Fig. 10 which should be compared against
Figs. 4 and 5. Clearly, the conventional identifier is much
inferior to either the full-order or the reduced-order worst-
case identifier. This clearly demonstrates the inapplicability
of the conventional identifier for a wide range of parameter
values without sufficient a priori information on the underlying
system. Therefore, for the purpose of robust on-line parameter
identification, the worst-case identifiers are clearly a much
superior choice.
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Fig. 9. Response of conventional identifier with band-limited white noise
disturbances: (a) parameter estimates 8 and (b) state estimation errors & — Z.

When we compare the performances of the two, however,
we see almost no difference between the full-order identifier
and the reduced-order identifier for both parameter estimation
and state estimation in all of the simulation runs above. This
is in line with the results of Corollary 4.2. The only difference
is that the simulation of the full-order identifier requires much
more computational power than that of the reduced-order
identifier. In the last set of simulations, the simulation for
the full-order identifier took 409005635 flops which is 70%
more than that of the reduced-order identifier, which was
240348937 flops.2 In this respect, the reduced-order identifier
is clearly superior, as to be expected. -

Hence, these simulation results clearly indicate that the
full- and reduced-order worst-case identifiers outperform the
conventional identifier, and the reduced-order identifier is
numerically better conditioned than the. full-order identifier
when € is small. We have also simulated the response of the
worst-case identifiers with unmodeled dynamics in addition
to the uncertainty arising from mismatch of initial conditions
and white noise disturbance inputs. The plots (not included
here) have shown that the parameter estimates are robust with

2These simulations were implemented in Matlab Simulink. Both flop counts
were generated using the simulation algorithm GEAR.
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Fig. 10. Response of the conventional identifier with no disturbances, but
with some discrepancy between true and estimated values of the initial state, in
the absence of any a priori information on the system: (a) parameter estimates
6 and (b) state estimation errors z — &.

respect to the unmodeled dynamics and converge to constant
values that lie in the interval (—4, 1). This is consistent with
and corroborates the statements of Theorems 4.1 and 4.2.

VII. CONCLUSION

In this paper, we have constructed worst-case full-order
and approximate identifiers for both SISO and MIMO linear
systems. By representing the system in output injection form
in state space, we have brought the worst-case identification
problem with partjal state measurements into one where the
cost-to-come function method can be applied as in [5]. In the
SISO case, the worst-case identifier contains a Kreisselmeier
observer as part of its structure; here the observer parameters
are given some optimal values which are obtained from the
solution of an algebraic Riccati equation. Outside this, the
identifier presented in this paper is significantly different from
the conventional LS identifier in that it contains additional
dynamics for the state estimates. As the noise intensity in
the measurement decreases, the full-order identifier becomes
numerically ill-conditioned. To alleviate this difficulty, we
have obtained an approximate (reduced-order) identifier which
is simpler in structure by two integrators and is numerically
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much better conditioned for implementation. These results
have been generalized to the MIMO case and stated with-
out detailed proofs. An extensive simulation study has been
included to demonstrate the effectiveness of the identification
scheme presented.

The results of this paper can be extended to nonlinear
systems with partial state measurements, provided that they
are in the following output injection form:

& = Aoz + A1 (y, u)d
y=Czx

where A and C are known constant matrices such that the pair
(A2, C) is observable and A; is a known nonlinear function
of y and w. The main difficulty in this case is to obtain a
coordinate-free characterization of nonlinear systems that can
be transformed into this output injection form; once this is
done, then the extension is immediate as in the case of a
similar extension discussed in [5] for the full-state. A future
direction of research would be to study the performance of
these worst-case identifiers when used in the control loop for
the design of robust adaptive controllers for uncertain linear
and nonlinear systems.
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