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Abstract-r-u: this paper discrete and continuous-time two-person deci­
sion problems with a hierarchical decision structure are studied and appli­
cability and appropriateness of a function-space approach in the derivation
of causal real-time implementable optimal Stackelberg (incentive) strate­
gies under various information patterns are discussed. Results on existence
and derivation of incentive strategies for dynamic games formulated in
abstract inner-product spaces, in the absence of any causality restriction on
the leader's policies, are first presented and then these results are extended
(and specialized) in two major directions: 1) discrete-time dynamic games
with informational advantage to the leader at each stage of the decision
process, which involves partial observation of the follower's decisions; and
derivation of multistage incentive strategies for the leader under a feedback
Stackelberg solution adapted to the feedback information pattern; and 2)
derivation of causal, physically realizable optimum affine Stackelberg
policies for both discrete and continuous-time problems, in terms of the
gradients of the cost functionals evaluated at the optimum (achievable)
operating point (which is in some cases the globally minimizing solution of
the leader's cost functional). The paper is concluded with some applications
of the theory to important special cases, some extensions to infinite-hori­
zon problems, and some numerical examples that further illustrate these
results.

I. INTRODUCTION AND A GENERAL DESCRIPTION OF
THE STACKELBERG PROBLEM

A. General Introduction

T H E PRESENCE of multiple decisionmakers is a
common phenomenon in many large-scale decision

problems, especially if they involve humanistic and socio­
economic elements. The decisionmakers may have noncom­
mensurable, and at times conflicting, preferences, or they
may have basically the same goal but may wish to de­
cen tralize the decisionmaking process in order to alleviate
the heavy burden of acquiring, transmitting, and process­
ing the excessive amount of information needed for a
centralized control (Athans [1], Basar and Cruz [5]). In
either case, the decisionmakers (or players, in the terminol­
ogy of game theory) would have different objective func-
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tions, and acquire possibly different information in the
decisionmaking process. Furthermore, there would be an
order in which the decisionmakers act and/or announce
their policies, and this order would either be fixed (prede­
termined) or determined as a consequence of the players'
actions. All these factors contribute to the concept of
solution to be adopted for a general multiperson de­
cisionmaking problem, and have to be taken into account
before the derivation of the solution process.

There is a growing variety of solution concepts in dy­
namic game theory (such as team solution, Pareto solution,
Nash solution, etc.; see Basar and Cruz [5], Basar and
Olsder [7]), and among these the Stackelberg (or leader­
follower) strategies (Cruz [12], [13]) have recently attracted
more and more attention, in both the control and econom­
ics literatures. This concept was first introduced by Von
Stackelberg [26] for a class of static decision problems
arising in economics. Then its dynamic version was pre-

, sen ted in a control theoretic framework by Chen and Cruz
[11] and Simaan and Cruz [24], [25]. This solution concept
is especially suitable for hierarchical multilevel decision
problems wherein the decisionmakers hold nonsymmetric
roles in the decisionmaking process. One of the players,
called the leader, occupies a higher decision level, and this
superior position enables him to announce his strategy in
advance and enforce it on the other players. By taking into
account the optimal responses of the followers, which may
be determined as the solution of some other multiperson
decision problem under a specific solution concept relevant
to that problem (see [18], [3]), the leader seeks the policy
that leads to a most favorable outcome for him.

Such situations arise in many real world problems. In a
large organization, the headquarters decisionmaker (the
leader) cannot dictate every subdivision's (the follower's)
task in fine detail; in its stead, it simply announces and
executes appropriate strategies (policies), such as the re­
source allocation strategy, penalty or reward policy, the
profit-sharing policy, etc., so as to induce the subdivisions
to work in accordance with the interests of the entire
organization ([2], [15], [16], [19], [22]). Some recent investi­
gations have been devoted to the study and construction of
such leader-follower strategies in special types of organiza­
tions. For example, a standard and efficient way for a
government (the leader) to solve the water pollution prob-
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t E [0, T) (1)

where T: f 1 ~ f 2 is the unique rational response mapping
of the follower, i.e.,

where we tacitly assumed existence of a unique solution to
(4).

Even though this definition is valid for all types of
information available to the players (i.e., for arbitrary Y1
and Y2 ) , the derivation of the solution will depend to a
great extent on the underlying information structure, as to
be elucidated iil the sequel.

1) Open-Loop Information Structure: The players' infor­
mation comprises only the a priori information, e.g., the
structural parameters of the problem and the initial condi­
tions. In this case, strategies and the decision variables
coincide, and are chosen as time-functions from the begin­
ning.

Necessary conditions for the open-loop solution of
Stackelberg dynamic game problems can be obtained
without any conceptual difficulties, although it is rather
difficult to solve them analytically or even numerically [13],
[7, ch. 7].

2) Closed-Loop Information Structure: Here the leader is
assumed to acquire state information with memory, i.e.,
elements of Y1 are given by Yl( t) = {x ( 'T), 'T ~ t} or Yl(k )
= {x( i), i = 0,. .. ,k}, thus leading to policies in the form
u(t) = Yl(t; x( 'T), 'T ~ t) or u1(k) = Yl(k; x(k), x(k ­
1),· .. ,x(O)). The follower, on the other hand, could acquire
closed-loop or open-loop information. Any direct approach
towards the solution of such dynamic Stackelberg games
meets with formidable difficulties, since the optimization
problem (4) is "structurally" dependent on the structure of
leader's strategy, that is, the follower faces an optimization
problem "parameterized" by the structure of Yl. Such
"nonclassical" optimal control problems and indirect ways
of obtaining the solution have been discussed in many
papers; see [21], [8], [9], [6], [3], [27], and it has been shown
that in certain cases the leader can achieve the global
minimum value of his cost function J1• This feature has
also been established by an "indirect method" [4] under
two conditions: 1) the leader can detect the follower's
action (detectability); and 2) by choosing an appropriate
strategy the leader is able to threaten the follower by severe
punishment in case of any deviation from the desired
solution trajectory (enforceability). It has been shown,
moreover, that the closed-loop information is rich enough
to allow for the solution to satisfy additional design specifi­
cations. One such specification involves a "robustness"
feature; that is, in case of a deviation from an optimal
path, not to punish the follower indefinitely at all future
stages, but rather use an effective threat policy which
would carry a punitive action role for only a few (two or
three) stages. This aspect of the problem and its solution
has been discussed in some recent papers in the literature,
see e.g., [27].

3) Feedback Strategies and the Feedback Stackelberg
Solution Concept: A subclass of closed-loop strategies com-

(4)T(Yl) = argminJ2 ( Yl ' Y2)
'Y2E f2

v(·) E 122[0, N - 1],
or

k = 0, 1,. .. , N - 1, (2)

where u(·) is the leader's decision variable and v(·) is the
follower's, and they are either time-functions or time-series,
belonging to the corresponding Hilbert spaces.

u(·) E Li1[0, T), v(·) E Li2[0, T),
in continuous time;

x(t) = f(t, x(t), u(t), v(t)),

or (in discrete time)

xi]: + 1) = f(k, x(k), u(k), v(k )),

B. General Description of the Stackelberg Problem

To be more precise in our description of a Stackelberg
game and the related solution concepts, let us now consider
a two-person dynamic game problem with a hierarchical
decision structure under which player 1 acts as the leader
and player 2 as the follower. The state x( . ) of the underly­
ing decision process evolves according to either (in con­
tinuous time)

in discrete time.

Generically, let us denote the decision variables of the
leader and the follower by u and v, respectively, and the
decision spaces by U and V. Furthermore, let X = L'2[O, T)
or 12[0, N - 1] denote the state space for the process,
where x(·) belongs, and let Y1 ~ X X V and Y2 ~ X X U
denote the information (observation) spaces of the leader
and the follower, respectively. A permissible policy
(strategy) Yi E f i for player i is a Borel-measurable map­
ping from his observation space into his decision space,
satisfying some additional regularity conditions like causal­
ity, Lipschitz continuity, etc. that will be delineated later in
proper contexts. One underlying assumption here is that,
with Xo E R n fixed, to each (Yl' Y2) E f 1 X f 2 , there corre­
sponds a unique state trajectory x(·) E X and a unique
pair of cost values {J1(Yl' Y2)' J2 (Yl' Y2)}.

The Stackelberg game problem involves, in a nutshell,
determination of a leader's policy Yt E f 1 satisfying

J1(Yl*' T(yt)) = minJ1(Yl ' T(Yl)) (3)
'Y1

lem is to design some subsidy programs or penalty policies
to encourage or induce the chemical plants (the followers)
to act cooperatively. A utility company (the leader) may
use a price strategy (or a pricing strategy) to induce the
customers (the followers) to consume the utility resource
more reasonably ([18], [20]). In a market with both free
competition and government adjustment, the government
(the leader) may design a strategy of adjusting the effective
income of the potential buyers of the commodity so as to
induce the competing duopolistic firms to cooperate and
achieve a Pareto-optimal solution [23]. All of these prob­
lems can be studied in the framework of Stackelberg dy­
namic game theory, thus making this new field very prom­
ising in applications.
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prises those policies that depend only on the current value
of the state without memory. That is

YI (r ) = {x (r) } or Yl (k) = {x (k ) } ·

Under such feedback information pattern for the leader,
the Stackelberg solution is still very difficult to obtain, and
in fact, in most cases, it will not even exist if the initial
state x(O) is taken a variable and a solution is sought for all
x(O) E (Rn. A way to circumvent this difficulty, in the case
of discrete-time problems, is to require that any subpro­
cess-to-go is also an optimal process in the Stackelberg
sense [25]. This permits the adoption of a dynamic pro­
gramming type approach which involves the solution of
static Stackelberg games at each stage (and in retrograde
time). In comparison with the Stackelberg solution, the
feedback Stackelberg solution gives only a suboptimal
solution; though it has the advantage of being simpler in
structure, computationally feasible and implementable.
Furthermore, it has better robustness properties against
noise and disturbance, since the leader can update on his
policy at each stage of the decision process.

4) Incentive Strategies.' As we have indicated in case 2),
the leader may expect to achieve the global optimum of his
cost function (the team solution), as though the follower
was cooperating with him, provided that he has memory,
can detect follower's actions and can announce and imple­
ment enforceable policies. In order to investigate the
Stackelberg problem from this viewpoint, we include the
decision v(·) of the follower directly in the information
YI ( . ) available to the leader, thereby allowing the leader to
adopt a strategy in the form

dynamic informational advantage to the leader at each
stage of the game, and under the feedback Stackelberg
solution concept. General conditions are obtained for ex­
istence of a solution and for this solution to coincide with
the global Stackelberg solution. In Section IV, we extend
the results of Section II to derivation of causal incentive
schemes and construction of real-time closed-loop Stackel­
berg strategies from a normal-form description, in both
discrete and continuous time. Some applications to im­
portant special cases with illustrative numerical examples
are given in Section V.

II. SOME GENERAL RESULTS ON EXISTENCE AND

DERIVATION OF OPTIMAL INCENTIVE STRATEGIES

In this section we consider an abstract reformulation of
the dynamic game problem of Section I-B with the leader
allowed to have a partial measurement of the follower's
decision variable v. Towards this end, let U and V be
Hilbert spaces, with elements u and v, respectively, and the
cost functional ~ of player i (i = 1,2) be a mapping from
U X V into IR. In this reformulation, the dynamic nature of
the decision process is suppressed, [2 == V, and [1 is the
class of all Borel-measurable mappings from Y into U,
where Y is a Hilbert space comprising observations of the
form

y = Nv

where N: V ~ Y is a linear operator with full range in Y.
The case when N is invertible is known as the perfect
information case; otherwise we say that the leader has only
partial information on the actions of the follower.

which explicitly displays the dependence of the leader's
decision variable u on the follower's, v. Such a dependence
is not necessarily instantaneous, and may involve delays;
furthermore, Yl may carry only partial information on o,
such as the one obtained through the present and past
values of the state. Whatever the nature of the dependence
is, such a structure (as in (5)) is called an incentive strategy,
because it displays the extent of the leader's power in
enforcing a' certain action on the follower through a
punishment or reward scheme and by utilizing the informa­
tion acquired through Yl ([18], [28]).

C. Outline of the Following Sections

This paper is devoted to an extensive discussion and
derivation of closed-loop Stackelberg strategies and incen­
tive policies in dynamic decision problems of the types
introduced above, and an elaboration on their properties.
In the next section we first discuss the incentive decision
problem when the leader's permissible strategies are of the
form (5), in abstract inner-product spaces, and present
.some general results on the existence and derivation of
linear incentive policies. These results are then extended in
Sections III and IV in two different directions. In Section
III we treat the discrete-time Stackelberg problem with

(7)

and immediately arrive at the following result.
Proposition 1: A desired decision pair (u", vd

) E U X V
can be induced by an incentive strategy "11 E [1' if to each
v E V, V =1= o", there corresponds a u = Yl(v) E U such
that (u, v) ~ fl d • A strategy that accomplishes this is the

fl d = {( u, v) E U xV: J2 ( u, v) ~ J2 ( U ". vd
) } ( 8)

A. Perfect Information Case

Let iu", vd
) E U X V be a desirable solution from the

point of view of the leader-this point could, for example,
be chosen as the global minimizer of the leader's cost
function J1(u, v) over U X V, if such a solution exists.
Then, an optimal incentive policy for the leader is one that
forces the follower to choose the decision o", by making the
incurred cost corresponding to v =1= vd sufficiently large; in
other words, for a given incentive strategy Yl to be imple­
mentable it should satisfy the strict inequality

J2 (u = "11 ( V ), v) > J2 ( u-, vd
) ,

for all v =1= o'', v E V (6)

together with the side condition

To formalize this concept, we introduce the set

(5)v(·) )

Authorized licensed use limited to: University of Illinois. Downloaded on March 28,2021 at 19:05:20 UTC from IEEE Xplore.  Restrictions apply. 



if v = vd

if v =F o",

ZHENG et al.: STACKELBERG STRATEGIES AND INCENTIVES

so-called (discontinuous) threat policy given by

(
u"

Yl (v) = '
any U such that (u, v) $. ~d'

(9)

Remark 1: The preceding proposition provides a suffi­
cient condition for existence of an optimal incentive
strategy. This condition is also necessary if we make an
additional behavioral assumption on the follower, which is
that on the boundary of ~d (which is his indifference curve)
he chooses points that are detrimental to the leader.

The next proposition shows that the hypothesis of Pro­
position 1 is satisfied for an important class of problems.

Proposition 2: If J2(u, v) is continuous and strictly con­
vex on U X V, any desired decision pair (u", vd

) E U X V
is inducible by an appropriate incentive strategy.

Proof: Since J2(u, v) is continuous and strictly convex,
the set Qd is closed and strictly convex. We now prove the
proposition by contradiction. Assume that there exists a
iu", vd ) E U X V which cannot be induced by an ap­
propriate incentive strategy. That is there exists a 0 E V,
v =1= o", such that (ii, 0) E Qd for every ii E U. Let va = ao"
+ (1 - 0:)0, 0 < 0: < 1; then (ii, va) = at u", vd

) + (1 -
o:)(ua , 0) E Qd' where Ua = (Ill - a)(ii - au d

) E U.
When 0: ~ 1, (u, va) ~ (u, vd

) and hence the limit point
(u, vd

) belongs to nd for every U E U. In particular, if u is
chosen as u" + uo and u" - uo(uo E U), the convex com­
bination iu", vd

) = (1/2)(u d + un' vd
) + 1/2(ud

- un' vd
)

should be an inner point of the strictly convex set nd • This
is contradictory to the fact that iu", vd

) is a boundary
point of nd and this completes the proof.

Incentive policies that induce the pair (u", Vd), under the
hypotheses of Proposition 2 are not only of the type (9),
but could also be continuous and even continuously dif­
ferentiable. However, if we further restrict the class of
incentive strategies to affine ones (because of their simple
structure), we have to impose an additional restriction on
J2 , as elucidated in the Proposition 3 below, whose proof
can be found in [28].

Proposition 3: For an incentive Stackelberg game, let
J2(u, v) be strictly convex and Frechet differentiable on
U X V, and its gradient with respect to u, evaluated at the
desired decision point (u", vd

) E U X V, does not vanish,
i.e.,

\7uJ2 i u", vd
) =1= O. (10)

Then, the desired decision pair can be induced by an affine
incentive strategy

Yl(V) = u" - Q(v - vd
) (11)

where Q: V ~ U is a linear operator whose adjoint Q*:
U ~ V satisfies the equation

\7vJ2 ( U", vd
) = Q*\7uJ2 ( U", vd

) ( 12)

which admits at least one solution under (10).
It should be noted that whenever a global minimum to

J1(u, v) exists on U X V (say, (u', vt
) ) , by letting (u", vd)

13

= (u', VI) above in (11) and (12), the leader can force the
follower to minimize collectively the leader's cost func­
tional J1(u, v).

B. Partial Dynamic Information

If the leader does not have access to v, he cannot
necessarily enforce an arbitrary decision pair tu", vd ) E U
X V on the follower, and, in particular, (u l

, VI) is in
general not achievable. In fact, achievable solution pairs
will be elements of the product space U X Y, with the best
achievable performance for the leader being [4].

min i 1(u, y) (13)
UxY

where

i 1 ( u, y) = J1 ( u, v*(u, y)) (14)

v*(u, y) = arg {min J2 (u, v) subject to Nv = y}. (15)
vE V

Here we have tacitly assumed that in (15) the argument is
unique for every (u, y) E U X Y, which in fact holds
whenever J2(u, v) is strictly convex on U X V [28, Lemma
2]. Further introducing

i 2 (u, y) = J2 (u, v*(u, y))

it can be shown [28] t~at strict convexity of J2(u, v) implies
strict convexity of J2(u, y) on U X Y, and hence the
incentive problem with partial dynamic information be­
comes equivalent to one with perfect information, with
(u, y) E U X Y being the decision variables and .i;(u, y),
i = 1,2, the cost functionals. Propositions 1-3 apply di­
rectly to this transformed, or so-called "projected" prob­
lem, provided that the desirable solution pair (u", yd) is
chosen out of U X Y. In this context, a direct application
of Proposition 3 leads to affine optimal incentive policies

Yl(y) = u" - Q(y - yd) (16)

where Q*: U ~ Y satisfies

\7y i2( Ud, yd) = Q*\7ui2(Ud, yd) (17)

provided that i 2(u, y) is Frechet differentiable on U X Y
- d d '

and \7u J2( u ,y ) =1= O.
Obviously, the operator Q* in either (12) or (17) is not

uniquely defined. Thus, there exist several candidates for
the solution of the incentive problem at our disposal to
satisfy some additional requirements. Some possible ways
of constructing the operator Q*, with application examples
and other details on these approaches can be found in [28].
Yet another possible selection criterion based on sensitivity
considerations has been presented and discussed in [10].

III. THE FEEDBACK STACKELBERG GAME WITH

STAGEWISE INFORMATION ADVANTAGE TO THE

LEADER

As one application of the general results presented in the
previous section, we consider here a feedback dynamic
game in discrete-time, as described by the state evolution
(2) and with player i's cost function given by ~o( X o, u, v),
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where

~k(x(k),uf-1,vf-1)

N-1

= L gj(j, x(j), ui j ], v(j)) + gj(N, x(N))
j=k

Uf-1 = {u(k ),.u(k + 1),. .. ,u(N - I)},

v~- 1 = {v (k ), v(k + 1),. .. ,v (N - I)}

v(k) E R m
2 , x(k) ERn,

k = 0,1,. .. ,N - 1. (18)

We endow the leader with such an information pattern that
permits him to use incentive strategies under partial ob­
servation of the follower's current actions; that is, letting

Y1(k) = y(k) = Nk(x(k), v(k)) E Yk ~ RP;

Nk : R n X R m
2 ~ RP (19)

we assume that permissible policies for the leader are Borel
measurable mappings

Y1(k; -}: R n X RP ~ Rml (20)

so that

Let us consider the last step decision problem starting
from x(N - 1), with only u(N - 1) and v(N - 1) to be
determined (the problem (N - 1». Following the discus­
sion of Section II-B, the best response of the follower to
fixed values of x(N - 1), u(N - 1) and yt N - 1) =
NN-1(X(N - 1), v(N - 1» will be

v(N - 1)

= arg { min J,f'-l(x(N - 1), u(N - 1), v(N - 1)),
v(N -1)

V N- 1 E N;:;2 1(x(N - 1), y(N -l)}
~ VN-1(N - 1, u(N - 1), y(N - 1)), (23)

where NN~l(X, y) = {v E R m 2: NN-1(X, v) = y}, thus,
leading to the" projected" cost functionals

~N -1 [ X (N - 1), u (N - 1), y (N - 1)]

~ ~N-1[X(N - 1), u(N - 1), VN-1(X(N - 1),

X u(N - 1), Y(N - 1))] (i = 1,2) . (24)

Therefore, the lowest cost value the leader can hope to
attain is

u(k) = Y1 [k; x ( k ), y (k )] . (21) It- 1 [ x ( N - 1)] ~ min Jt- 1

u(N -1), y(N -1)
For the follower, on the other hand, we assume that only
feedback state information is available, i.e., . [x(N - 1), u(N - 1), y(N - 1)]. (25)

What we envisage here is a decision making process wherein
the leader is dominant only stagewise, not only by an-·
nouncing his policy ahead of the follower but also by
incorporating partial information on the follower's current
action in his incentive strategy. More precisely, the rules
that underlie the game are as follows: At each stage
k = 0,1,.· ',N - 1, the leader announces his strategy u(k)
= 'Y1[k; x(k), y(k)] first, to which the follower reacts by
minimizing his stagewise cost function. This then de­
termines the values of y(k), u(k), v(k) and x(k + 1) in
terms of x(k), and transition to the next stage takes place.
Of course, while making decisions at each stage, the players
will have to anticipate their future moves and arrive at
their policies accordingly. At each stage a dynamic Stackel­
berg game (incentive) problem of the type discussed in
Section II is solved, with the leader, not only announcing
his policy ahead of the follower, but also having informa­
tional advantage (partial information on the follower's
decision). We call such a game a "feedback Stackelberg
game with informational advantage to the leader" and the
associated solution concept the "feedback Stackelberg
solution with informational advantage to the leader"
(FSIA). Note that this solution concept coincides with the
standard feedback Stackelberg concept (cf. [24], [25]) in the
case Nk(x(k), v(k» is independent of v(k).

We now discuss derivation of the FSIA for the finite
horizon multistage decision process formulated in this sec­
tion.

v(k) = Y2 [k; x (k )] . (22) Let us assume that, for each x(N - 1) ERn, there exists a
unique solution (u'(N - 1), y'(N - 1» to (25). (If the
solution to (25) is not unique, we adopt one of the possible
solutions according to some other consideration of prefer­
ence (for the leader), see [4] for a discussion on this point.)

Now introduce the counterpart of set (8), in this context,
which will depend explicitly on x(N - 1):

~N-1(X(N - 1)) = {u, y) E Rml X YN_1IJ2N-1,

·(x(N - 1), u, y) ~ Jr-1(x(N - l)u t(N - 1),

.Y t (N - I))} (26)

and let ~~_l(x(N - 1» denote its complement. Then, we
have

Definition 1: For problem (N - 1), a state x(N - 1) is
called incentive controllable if either YN -1 is a singleton or
for any y E YN - 1, Y =1= y'(N - 1), there exists u E Rml
such that (u, y) E ~~_l(x(N - 1». Furthermore, if all
states x(N - 1) E R n are incentive controllable, then the
problem (N - 1) is called completely incentive controllable.

Now, an existence result follows immediately from Pro­
position 2.1:

Proposition 4: Assume that problem (N - 1) is com­
pletely incentive controllable. Then for each x N -1 there
exists an incentive strategy u(n - 1) = 'Y1[N - 1; x(N ­
1), yt N - 1)] which forces the follower to take the decision
v(N - 1) = VN-I(X(N - 1), u'(N - 1), y'(N - 1», with
the realized cost value for the leader being the minimum
value of Jt- I

, i.e., I{'-I(X(N - 1».
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Remark 2: If y(N - 1) = v(N - 1), or v(N -- 1) =
NN~l(X(N - 1), y(N - 1)) exists uniquely, the leader has
complete access to the follower's decision and the problem
becomes one with perfect dynamic information (see Sec­
tion II-A). In this case the attainable lower bound for an
incentive controllable state x N -1 is exactly the team solu­
tion

I 1
N - 1(X(N - 1)) = min

u(N -I), v(N -1)

.Jr'-l(x(N - 1), u(N - 1), v(N - 1)) (27)

which is obviously the absolute lower bound.
The result of Proposition 4 can now be applied recur­

sively by simply replacing J/ with the cost-to-go function
J/ to be introduced below and by appropriately redefining
It(x(k)). Towards this end, let

~k(x(k), u(k), v(k)) £ gt(k, x(k), u(k),

.v ( k )) + 1/ + 1( X (k + 1)) (28)

where

x(k + 1) = f(k, x(k), u(k), v(k») (29)

and

It+1(x(k + 1)) = minit+1(x(k + 1), u, y)
u,y

== it+1(x(k + 1), u'l}: + 1), y'I]: + 1))
(30)

If + 1 ( X (k + 1)) = iZ
k + 1 ( X (k + 1),

u'[k + 1), y'I}: + 1)). (31)

Construct

vt(x(k), u(k), y(k)) = arg{ ~nJ;k(x(k), u(k), v),

-u E Nk-1(X(k), y(k))} (32)

J/(x(k), u(k), y(k)) = ~k(x(k), u(k),

uk(x (k ), u(k ), y (k ») (i = 1, 2)

(33)
(ut(k; x(k )), yt(k; xi k )))

= arg { r::.i~N(x ( k ), u, y )} (34)

1/ ( x ( k )) = ~k ( X ( k ), U t ( k ), Y t ( k ) ) (i = 1, 2)

(35)

~k ( X ( k ») = {( u, y) E IR m 2 X Yk Ii z
k

( X ( k ), U, Y )

~ i Z
k(X (k ), u' (k), yt (k )) } . (36)

Then, the problem considered at stage k has the projected
cost functions ilk and u. with a lower bound on the former
given by It(x(k)). The following (recursive) definition
now paves the way for Proposition 5, the generalization of
Proposition 4.

Definition 2: The (N - k )-stage problem (k) is called
completely incentive controllable, if

15

1) the corresponding problem (k + 1) is completely in­
centive controllable; and 2) the equivalent one-stage incen­
tive problem (28)-(29) is completely incentive controllable
in the sense of Definition 1.

Proposition 5: For a completely incentive controllable
problem (k), and for each starting state x k ' there exists an
optimal incentive strategy

u*(k) = yt[k; x(k), y(k)]

= (Ut(k; x(k)), wheny(k) = y't k; x(k))
u E IRml such that (u, y) E ~k(x(k)),

wheny(k) =1= y'I k; x(k)), (37)

that forces the follower to take the decision v(k) =
vk(x(k), u'Uc), yt(k)), with the realized cost value for the
leader being It(x(k). This constitutes a FSIA solution for
the dynamic game problem considered in this section.

Remark 3: Equations (28)-(35) constitute the recurrence
relations between I/(x(k) and Iik+1(X(k + 1)), (i = 1,2).
This is the generalized optimality principle for the feed­
back Stackelberg game problem with informational ad­
vantage to the leader, under the assumption of the com­
plete incentive controllability.

We now put some more structure on the underlying
spaces and functionals, in order to obtain some specific
results. The first set of such restraints and the main result
that ensues are the following.

Proposition 6: The feedback Stackelberg game is com­
pletely incentive controllable if for each x(k) E IRn, and
k = 0,·· ·,N - 1, Yk is a vector space and izk(x(k), u, y)
is continuous and strictly convex in the pair (u, y) E

IRm1xYk •

Proof: Verification of this result involves a repeated
application of Proposition 2 in a routine way, and is
therefore omitted.

Corollary 1: When we construct the sequence
{i/(x(k), u(k), y(k))} according to relations (28)-(35),
and recursively from k = N - 1 backwards, if all
iZk(x(k), u(k), y(k)) are continuous, strictly convex in
u(k) and y(k) for all x(k) E IR n and k ~ 0, then the
problem always admits a FSIA solution, with one such
optimal incentive strategy given by (37).

The conditions of this corollary (and of Proposition 6)
are actually satisfied for a class of problems of practical
importance. Consider, for example, the following set of
sufficient conditions:

1) gz(N; x) is convex in x E IR n
;

2) gz(k; x, u, u) is decomposable in the form;
gz(k; x, u, u) = Pz(k; x) + qz(k; u, v), where
Pz(k; x) is convex in x and q2(k; u, v) is strictly
convex in (u, v);

3) f(k; x, u, v) and Nk(x, v) are affine in their argu­
ments;

4) u't k; x) and y'(k; x) are affine in x;
5) vk(x, u, y) is affine in x, u and y.

These guarantee satisfaction of the hypotheses of the
corollary. One such special class is the linear-quadratic
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problem where

g2(N; x) = (x, QNX) (QN ~ 0)

g2(k; x, u, v) = (x, QkX) + (u, Rku) + (v, SkV)

(Qk ~ 0, s, > 0, s, > 0)

where ( . , . ) denotes appropriate inner products in vector
spaces;

f(k; x, u, v) = Akx + Biu + Ckv

Nk(x, v) = Nkv

where A k , B k , Ci; N; are matrices of appropriate dimen­
sions, with N, being of full rank.

It readily follows from Proposition 3 that in this case the
FSIA solutions are not only of the type (37), but can also
be taken to be affine, in which case

ut(k) = L 1(k )x(k ), yt(k) = L 2(k )x(k )

vt(x, u, y) = M1(k )x + M2(k )u(k ) + M 3(k )y(k )

u*(k) = 'Yt [k; x(k), y(k)]

= L 1(k )x(k ) - Q1(k)[y(k) - L 2(k )x(k )]

with capital letters denoting matrices of appropriate di­
mensions, and Q1(k) being a gain matrix whose transpose
satisfies a gradient equation of the type (12), for each
k ~ O. Explicit expressions for these matrices can be ob­
tained by basically solving (28)-(35), recursively, and by
noting that ~k and 1/ are quadratic functionals for each
k ~ O.

Remark 4: The preceding results find natural extensions
to the class of problems wherein the control and measure­
ment spaces are arbitrary (infinite dimensional) Banach
spaces, instead of being finite dimensional. Particularly, for
the linear-quadratic problem discussed above, the same
affine structure prevails provided that we interpret the
inner-products appropriately and replace all matrices with
linear operators. Such a result, then, would be applicable to
continuous-time dynamic games in which the decision
makers have access to sampled information and the feed­
back solution is defined in between different sampled
subintervals.

Remark 5: Under the conditions of Proposition 4 and
Corollary 3.1, and when the leader has perfect access to the
follower's decision variable at each stage, the affine FSIA
solution has also a robust feature in the sense that its
truncated version constitutes a FSIA solution to a dynamic
feedback game of shorter duration, defined on the interval
[k, N - 1], for any k > O. This result is a direct conse­
quence of the fact that the trajectory corresponding to the
original FSIA solution satisfies the principle of optimality
(being the team solution from the leader's point of view)
and the leader's affine FSIA strategy employs only current
state information.

IV. DERIVATION OF CAUSAL STACKELBERG SOLUTIONS

TO DISCRETE AND CONTINUOus-TIME

DYNAMIC GAMES

In this section we turn our attention to the global
Stackelberg solution in both discrete and continuous-time

dynamic games of the type introduced in §II-B, and under
the closed-loop information pattern. Here, the leader will
not have any stagewise informational advantage over the
follower, but he will still dominate the decision process by
announcing his strategy ahead of time and enforcing it on
the follower, in accordance with the solution concept (3)­
(4). Furthermore, because of its appealing features, we
restrict attention to those strategies for the leader that are
linear in the dynamic part of the information, and also
assume, without any loss of generality, that the follower
employs only open-loop policies (which does not lead to
any degradation in his performance (see, e.g., [7]).

Let J1 and J2 be appropriate cost functionals for players
1 and 2, which, for fixed initial state X o E ~ ", can always
be rewritten (by elimination of the state variable) as func­
tions of solely the decision variables (u, v) E U X V (see
Section 1-B for notation). Since every discrete or continu­
ous-time dynamic game can be expressed in this form, the
analyses and results of Section II are directly applicable
here provided that the corresponding optimal incentive
strategy for the leader is permissible, i.e., it is causal and
satisfies the additional structural restrictions that may be
imposed on elements of fl. Specifically, let us assume that:

1) Through the closed-loop state information, the leader
is able to infer perfectly the past values of v( '), the
decision function of the follower.

2) J2(u, v) is Frechet-differentiable and strictly convex
on U X V.

3) A global minimum to J1(u, v) exists on U X V, which
we denote by (u t , vt ) E U X V, and which is adopted as a
desirable solution by the leader.

4) At this solution point,

\7 uJ2 ( ut, vt) =1= o. (38)

Then, we know from Proposition 3 that, in the absence of
causality, every optimal affine Stackelberg solution can be
written as

u = 'Y1 (v) = ut - Q(v - vt ) (39)

where the adjoint of Q, Q*: U ~ V, satisfies

\7v J2 ( ut, vt) = Q*\7uJ2 ( ut, vt ) . (40)

Now, the real question here is whether we can find an
operator Q whose adjoint satisfies (40) above, and which is
further causal and leads to a policy 'Y1' as given by (39),
belonging to a given closed-loop policy space fl. We show
below that, under the closed-loop pattern and for both
discrete and continuous-time problems satisfying ap­
propriate structural assumptions, such a linear operator
can be contructed.

Towards this end, we first introduce some notation. Let
the inner-product of two elementsf(·) and g(.) in L 2[O, T)
be defined by

(f, g) £ l T
f' ( t )g( t ) dt = l T

g'(t )! ( t ) dt (41)
o 0

and further introduce the notation
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where 0 ~ tl ~ t2 ~ T. Similarly, for discrete-time process- T ~ t - e; such an operator Qwill be called e-strong causal
es, the inner-product of f(·), g(.) E 12[0, N] is defined by (and Q*-t:-strong anticausal).

Let us first introduce
N N

<f, g) £ L f'(i)g(i) = L g'(i)f(i)
i=O i=O

(43) (47)

and furthermore and

(49)

(51)
(T,t<tep,T>t)

(otherwise)

1t 4> '1"(t)'1'(t) d
o <I>(t) t.

Thus, it is an integral operator with kernel

If <1>( t) = 0, i.e., </>( T) = 0, T ~ t (recall that, for functions
f(t), g(t) in Hilbert space L 2[tO' tf ], f(·) = g(.) means
f( t) = g( t) for almost all t E [0, T), except perhaps on
some set of measure zero; this fact has to be noted
throughout the paper), then the leader cannot control the
situation during T E [t, T). If, concurrently, \fJ(t) '=1= 0, the
follower can change the value of J2 (u, v) by infinitesimal
variations in v(·). Thus, it is intuitively evident that the
leader may not be able to enforce any desired decision pair
(u", vd

) by a causal incentive strategy, because he cannot
respond effectively to the variation in the follower's deci­
sion, even though he may be able to detect it.

To put the above intuitive reasoning into precise form,
we first prove for continuous-time systems the following
result.

Lemma 1: For any </>(.) E U = L21[to, tf ] and '1'(.) E V
= L 22[to, tf ], a set of sufficient conditions for existence of
an anticausal bounded linear operator Q*: U ~ V satisfy­
ing (40) which can be rewritten as Q*</> = '1', is the follow­
ing:

a) For all t E [0, T), '1'( t) =1= 0 implies <1>( t) =1= O. (Let
tep be the smallest time such that <I>(tep) = 0, and t'Y be the
smallest time making \fJ (t) = 0; then the condition says
tep ~ t'Y.)

b) When lep = t'Y' the following integral exists and
remains bounded

(This second condition means that the follower's "control
ability," measured in terms of '1'( t), cannot be much
stronger than the leader's, at the point tep = t'Y when they
concurrently lose their control ability.)

Proof: The lemma can be proved simply by giving one
of the possible solutions for operator Q*, which is

(t < tep)

(t ~ tep).

(50)

8u ( . )>= faT<p'( t )8u ( t) dt

I I

<f, g)(k,/) = L f'(i)g(i) = L g'(i)f(i) (44)
i=k i=k

N

or = L </>'(i)~u(i). (46)
i=O

Thus, the value of </>( .) at time t simply represents the
local sensitivity of J2 with respect to u(t), in other words,
the' ability of the leader to influence J2 by changing his
decision variable u( t) at time t. Likewise, the time function
'1'(.) = \1vJ2 ( u, v) represents the follower's ability to in­
fluence his cost functional J2 by changing v( t), the value of
v(·) at time t. Hence, they can be referred to as "sensitivity
functions" representing the sensitivity of J2 to the players'
actions, which may be taken as a measure of the players'
control ability in the related optimization problems.

Of course, when we speak of "changing" or "influence"
as above, we use these terms in the meaning of "infinitesi­
mal variations" or the "first order approximation." Thus,
they make sense only in a small neighborhood of a specific
point (u, v) E U X V.

Hence, in the absence of a causality restriction, the
results of Section II admit an explicit" physical interpreta­
tion." The only condition for existence of an affine incen­
tive solution to the Stackelberg dynamic game is that the
sensitivity of J2 with respect to u( . ) should not be zero (cf.
Proposition 3, and also (38)). That is, whenever the leader
is able to influence the follower's cost-functional (infinitesi­
mally), he can always force the follower to choose the
prescribed value for his decision variable.

Now, when the leader is faced with the additional con­
straint that his control at time t cannot depend on the
"future values" of v(·), the operator Q in the incentive
strategy (39) should be a causal operator (or equivalently,
Q* satisfying (40) should be anti-causal). Moreover, if the
leader needs a nonzero time duration e to infer the neces­
sary information on v(t) from the current observation, the
control u( t) can only depend on the value of v( T) for

where k, I are integers, °~ k ~ I ~ N. Now introduce

where the gradients are evaluated at some specific values of
u E U and v E V that will be clear from the context.

To reveal a property of </>(.) and '1'(.) which is vital in
the construction of affine incentive strategies (cf. (39)), let
us consider the variation in J2 resulting from, for example,
an infinitesimal variation ~u(·) in u(· ):
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(k<tep-1)

(k~tep-l)

(58)

{

N -1 'I' ( k ) CP'( i) .

Q*[f(i)](k) = i=F+1 4>(~ + 1) f(l)

and

{i
T - e ep (7 H'(t) g( t) dt (( ~ 7 < t</> )

Q[g(t)]( 'T) = 0 «p(t + f)
° ('T < f or f ~ t ep ) .

(57)

The counterpart of Lemma 1 for the discrete-time case is
much simpler, since Condition b is then implied by Condi-
tion a. .

Lemma 2: For any CP(·) E U = 121[0, N - 1], '1'(.) E V
= 122[0, N - 1], a sufficient condition for existence of a
one-step-strong anticausallinear operator Q*: U ~ V such
that Q*cp = 'I' is that

iii) whenever \[J(k) = L:~=-kl'l"(;)'I'(i) =1= 0, we must have
«P(k + 1) = L:[:.-'/+lcp'(i)CP(i) =1= 0; that is, tep ~ ti' + 1.1

The proof of this lemma is similar to that .of Lemma 1
and is therefore omitted. The corresponding linear opera­
tors are

and

(52)

(53)

Q[g(t)]( 7) = tTR'(t, 7)g(t) dt

= 11" cP ( 'T ) '1" ( t ) () d
o 4>(t) g t i.

(see, e.g., [29, p. 67]). Note that

IIRII2 £ tTtTTr[R(t,7)R'(t, 7)] d t dt

=rt> 'I'(t)cp'(t)CP( 'T )'I"(t) d t dt
. t t «p 2 (t )

=llep'l"(t)'I'(t)jlep,( ) ( )d d
o 4>2(t) I ep 7 ep 7 7 t

_ jtep '1"( t )'I'( t) d
- I 4>( r ) t < 00

and therefore Q* is well-defined and bounded, with IIQ*11 2

~ IIRI1 2
• It is anticausal, since the value of Q*[J( 'T)] at

time t depends only on the values of J('T) for 'T E [t, tep).
Finally it is straightforward to verify that Q*[ CP( .)](t) =
'I'(t), except perhaps at times t belonging to a set of
measure zero.

Remark 6: The operator Q, being the adjoint of the
anticausal operator Q*, is a causal operator. The adjoint of
(50) can readily be computed to be

The lemma can easily be generalized to the case when
Q*: U ~ V is required to be an e-strong anticausal opera­
tor. The sufficient conditions become, in this case the
following:

i) whenever ('I', '1')«(, T) =1= 0, we must have «P(t + f) =
(CP, cP )(t+(, T) =1= 0, that is tep ~ ti' + f. This implies that
'I' ( t) ==:: °for all t ~ T - e; and

ii) when tep = ti' + e, the following integral exists and
remains bounded:

(55)

114> - ( 'l" (t}'l'( t ) d
o «p(t + f) t.

(60)

(1 ~ i < tep)

(i = °or i ~ t ep )

(59)

. { i1:1 ep(i)'l"(k) g(k)
Q[g(k)](l) = k=O 4>(k: 1)

which are one-step strong anticausal and one-step strong
causal, respectively. The general conclusion we derive from
these two lemmas is the following:

Proposition 7: For the general Stackelberg dynamic game
problem (Section I-B) with U = Li1[0, T], V = Li2[0, T]
or U = IG1[0, N - 1], V = 122 [0, N - 1], in addition to
the assumptions 1)-4) made in this section, let conditions
a) and b) of Lemma 1 (or correspondingly, condition iii of
Lemma 2) be satisfied, and let the leader have perfect
access to the past values of the follower's control variable
(by possibly inferring these values perfectly through the
observation of the state). Then the operator Q defining the
affine incentive strategy

(54)

(t < tep - e, t + e < 'T < tep)

(otherwise) .
{

'I' ( t ) CP'( 'T )
R(t,'T)= «P(t+f)

o

In this case the kernel corresponding to (51) is

Moreover, the counterparts of (50) and (53), in this case,
are, respectively, .

(otherwise)

(56)

where

( ut, vt ) = arg min J1 ( u, v), (61)
(U,v)EUXV

can be chosen as a causal operator (correspondingly, one­
step strong-causal operator). One of its possible forms is

1Here tep and t'l' are the discrete-time counterparts of those introduced
in Lemma 1.
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(62)

and quadratic cost-functionals

+ U I ( j.)R i ( j) u( j) + v'( j) s, (j) v( j) } (65)

N-l

~ = x/(N)Q(N)x(N) + L {X/(j)Qi(j)X(j)
j=O

( k = 0 1 ... N - 2)'" ,

(k == 0,1,. .. ,N - 1)

In accordance with the method presented in Sections II
and IV, first the team solution of minimizing J1 is obtained
from the standard Riccati recurrence relations, which in­
volves the value function x I ( k )P(k )x (k ), the corre­
sponding team optimal controls ut(k) and vt(k), and
optimal trajectory x t ( . ) . Then the gradients ep(k) =
"V u(k)J2t and '!'(k) = "Vv(k)J2t at the desired team solution
are derived from the dynamic equations as

xi k + 1) = x(k) + u(k) + v(k)

(k=0,1,···,N-2)

x(N) = x(N - 1) + u(N - 1)
N-l

J1 = x2 (N ) + L (x 2 (k ) + 2u 2(k) + v2(k ))
k=O

N-l

J2 = X 2 ( N) + L (x 2 ( k) + u2
( k) + 3v2

( k )) .
k=O

N

ep(k) = L xt(j) + ut(k)
j=k+l

N

'!'(k) = L xt(j) + 3vt(k)
j=k+I

where i = 1, 2, refer to the leader and the follower, respec­
tively.

The approach presented in the previous section can be
used in obtaining a causal solution to this problem under
the closed-loop information pattern. Here we give only a
numerical example to illustrate the method.

Example 1:v(·)=Hx(·)

then we have the closed-loop solution

u(·) = ut ( . ) - Q[Hx(·) -vt ( . ) ] (63)

ep ( N) =1= 0 and '!' (N) = O.

The causal incentive solution obtained above offers us a
possible way of constructing the "closed-loop" solution to
the Stackelberg dynamic game problem, provided that v(·)
can be reconstructed from the observed state information
in real-time. If, for example, there is a causal operator H
such that

which is physically realizable. More specific derivations
along this line are provided in the next section.

We should note that when the e-strong causality condi­
tions i) and ii) are taken instead of a) and b), the statement
of Proposition 6 can be modified in a straightforward
manner, which then says that affine e-strong causal solu­
tions exist. These may be used in realizing the optimum
Stackelberg strategy of the leader, with an e-delay in the
reconstruction of v( .) from the state observation x ( .).

Finally, we should remark that the results of this section,
in particular those of Lemmas 1, 2, and Proposition 7, can
be extended to the case when the leader has only partial
state information and/or partial dynamic information on
the follower's actions, without much difficulty and with
only minor modifications. This extension involves, basi­
cally, the derivation of an achievable desirable solution
(u t, yt) to replace (61) (cf. Section II-B), "projected" cost
functional ]2 (u, y) for the follower, and rewording of
Lemmas 1-2 and Proposition 7 in terms of this new
notation. We do not pursue this point here; see, however,
the specific problem solved in Section V-B.

given by (53) (or, correspondingly, by (59)), and it provides
a global Stackelberg solution to the problem.

Remark 7: For the discrete-time case, a very simple and
useful version of the sufficient conditions is that at the last
decision stage

V. ApPLICATIONS AND EXAMPLES

In this section, the concepts and results presented in
Sections II and IV will be applied to some special cases of
practical interest. Some numerical examples will be given
to show the applicability of the theory and the general
approach.

A. Causal Stackelberg Solution to Discrete-Time Linear
Quadratic Dynamic Game Problems

One of the important subclasses of problems widely
discussed in the literature (see e.g., [9], [27]) is the discrete­
time dynamic Stackelberg game with linear-state equation

xi]: + 1) = A(k)x(k) + B(k)u(k) + C(k)v(k)

(k = 0, 1,. . . ,N - 1) (64)

l/J(N-1)=0,

Note that <I>(k) = Lf=//ctl(i), and from (60) and (59) the
optimal Stackelberg strategy for the leader is

i - 1 '1'( k ) [v( k) - vt ( k )]
y(i; x) = ut(i) + <f>(i) k"f

o
ep(k + 1) ,

u(O) = ut(o).

i-I '1'(k)
== P(i)x(i) + <f>(i) k"fOep(k + 1)

. [x (k + 1) - x ( k) -' ut ( k) - vt ( k )] ,

u(O) = ut(O).

The values of these coefficients for the case N = 4 'are

Authorized licensed use limited to: University of Illinois. Downloaded on March 28,2021 at 19:05:20 UTC from IEEE Xplore.  Restrictions apply. 



20 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS,VOL. SMc-14, No.1, JANUARY/FEBRUARY 1984

TABLEI

k 0

P(k) 1.4576075 1.4592593 1.4761905 1.6666667 1.000000

ut(k)/x7(k) -0.2288037 -0.2296296 -0.2380953 -0.3333333

v7(k)/xt(k) -0.4576074 -0.4592593 -0.4761905 0

x
7(k)/xT(k-1) 0.3135888 0.3111111 0.2857143 0.6666667

x'(k)/x(o) 0.3135888 0.097561 0.0278746 0.018583

<p(k)/x(o) 0.2288037 0.0720093 0.0232288 0.0092915

~(k)/x(o) -0.9152148 -0.2880372 -0.0929152 0

·~(k) /x 2(o) 0.0581624 0.0058112 0.006259 0.0000863

listed in Table I, with the corresponding policies being

u(l) = ut(l) - 11.340855( v(O) - vt(O))

(2) = ut (2) - 3.6583393

·(v(O) - vt(O) -1.068982(v(1) - vt(l))

(3) = ut (3) - 1.4633326

. (v(O) - vt(O) - 0.4275919( v(l) - vt(l))

-10.003726(v(2) - vt(2)).

Here

v(O) - vt(O) = x(l) - x(O) - ut(O) - vt(O)

v(l) - vt(l) = ~(2) - x(l) - ut(l) - vt(l)

v(2) - vt(2) = x(3) - x(2) - ut(2) - vt(2).

This is a causal closed-loop Stackelberg solution which
achieves the globally optimal team solution.

algebraic Riccati equation

and the optimal trajectory x t satisfies

xt = Acxt £ [A - (BR11B' + CS11C')p] x t ,

xt(O) =x o' (70)

We now attempt to solve this problem under two differ­
ent causal-functional dependences for the leader's policy,
viz "Yl: V ~ U; "Yl(V) = ut - Q(v - vt ) and "Yl: X ~ U;
"Yl(X) = ut - Q(x - x t ) , where Q is, in each case, a linear
causal operator.

In the former case, we first calculate the gradients of J2

with respect to u and v (see Appendix A) and arrive at

</>(t) = V uJ2 (ut , vt) = 2Mxt(t ) (71)

'!'( t) = ~vJ2 (ut, vt) = 2Nxt( z) (72)

where

where P is the unique positive definite solution of the

(76)

(75)

(73)

(74)

Q'M=N.

M = (B'l - R R- 1B'P)
a 2 1

N = (C'Io - S2S11C'p)

If a constant matrix gain solution is desired, then we
must have

and 10 is the solution of the matrix equation

A'Ia + IoA c + Q2 = O.

Unless Range M' :) Range N', such a Q does not exist,
and hence the problem does not admit a solution. How­
ever, if we also allow dependence on the initial state x a'
affine causal solutions exist provided that for all xa =F 0,
MeActxo =F 0, which is equivalent to the requirement that
(M, A c ) be observable. In this case an optimal affine

(i = 1,2) (67)

u( t) E IR m 1 ,

t ~ 0; (66)

x(t) E IR n
,

x(O) = X o,

x = Ax + Bu + Cv

v(t) E IR m
2

where Band C have full-column rank m1 and m 2 , respec­
tively, (A, (B:C)) is controllable, (Qt/ 2

, A) is observable,
Qi ~ 0, R 1 > 0, s, > 0, R 2 ~ O. The team solution that
minimizes J1 is

B. The Linear Quadratic Infinite-Time Stackelberg Problem

Consider the continuous-time problem formulated by
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u(t) = ut(t) - Q[x - xt](t),

Thus, the optimum Stackelberg strategy in case of x-depen­
dence is

where s is the Laplace variable.
On the other hand, from (82) and (83)

W(s) = U(s) - ut(s) = 8(1 _ 6r)_1_.
V(s)-Vt(s) q s+4'

N = (q - 6r)/2.M = 3r12,

since from 2p 2 - 4P - 6 = 0 we have P = 3 and Ac =

- 4. From (75), /0 = (1/2)q. From (73)-(74), M = (1/2)q,
N = (1/2)q - 3r. That is, </>(t) = qxt(t), 'I'(t) = (q ­

6r)xt( t ). The optimal Stackelberg strategy is

u(t) = ut(t) - Q[v - vt](t)

where the operator Q is either Q = N1M = 1 - 6r1q or

Q[g(t)](T) = CP(T)[ f~(t)g(t) dt
o ep2(S) ds

t

= 8(1- ~)fe4(1-"')g(t)dt.

This solution can be implemented by a first-order block
with transfer function

u(t) = ut - Q(v - vt)

= ut(t) - fCP(t)i"~CJ)[V(CJ) - vt(CJ)] dCJ. (77)
o 1 CP'(s) cP ( s) ds

o
Next, we seek a solution in the form u = ut - Q(x ­

x t ) , where Q is causal. By using the approach outlined in
Section II-B and taking the entire trajectory x as the
leader's observed information, we have, uniquely,

v*(u, x) = C+(x - Ax - Bu) (78)
where C+:£ (C'C)-lC' is the pseudo-inverse of C. Note
that in this case the absolute lower bound given by (68) is
attainable, since the operator N of Section 11-B is invertible
(C being a matrix of full-column rank). Now, projecting
the problem into U X X where (u, x) belongs, we obtain

j2(U, x) = (x, Q2X) + (u, R 2x )

+ «(x - Ax - Bu), C(x - Ax - Bu)

(79)

where C:£ C+'S2C+. The gradients v u i 2 and vx i 2 at
(u t , xt ) can be evaluated as (see Appendix B)

<p(t) = v ui2 (ut , xt ) = 2Mxt ( t ) (80)

'I' ( t) = Vx i 2 ( ut, x t) = 2N x t ( t ) (81)

incentive scheme is

where

M = (B'C+'S2S11C' - R 2R11B')P (82)

N = Q2 + C+'S2 S1 1C'PA
c + A'C+'S2S11C'P. (83)

The conclusion we arrive at here is almost the same as in
the case (73)-(74). 'When Range M' ::) Range N', there ex­
ists a constant gain solution u = ut - Q(x - x") with Q
satisfying Q'M = N. Otherwise, provided that (M, A c ) is
observable, there exists an affine causal solution, depend­
ing on X o =F 0, given by

u(t) = ut - Q(x - x t )

= ut(t) - fCP(t)i"~CJ)(X(CJ) - xt(CJ») dCJ,
o 1 CP'(s ) cP ( s) ds

(J

(84)

where <p(.) and '1'(.) are given by (80) and (81), respec­
tively.

We now provide a numerical example to illustrate these
results.

Example 2:

x=2x+u+v, x(O)=xo tE[O,OO)

J1 = ft:J(6x2 + u2 + v2
) dt

o

J2 = l°O(qx 2 + rv2) di, q> 0, r > O.
o

The team solution is

vt = -3xt ,

where the operator Q is either Q = N1M = ql3r - 2 or

which may be implemented in the frequency domain by

W(s) = U(s) - Ut(s) = 8(!L _2)_1_.
X(s) - xt(s) 3r s + 4

C. The Linear Quadratic Finite-Time Closed-Loop
Stackelberg Problem

In this subsection we provide an example illustrating the
results obtained in Section IV when tep < 00.

Example 3:
Consider the problem with the specifics

x = 2x + u + b(t)v, t E [0,1],

J1 = 4x 2 (l ) + ~\6X2 + u2 + v2
) dt,

J2 = 2x 2(l ) + f(qX 2 + rv2) dt (q > 0, r > 0).

where the time-varying gain b(t) is a continuous bounded
function; furthermore, when t ~ 1, bet) ~ 0 with the order
of magnitude being

b(t) =bof. lX +O(f.lX), f.=l-t, 0:>0.
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The team solution for Jl is

ut(t) = -2P(t)xt(t), vt = -2b(t)P(t)xt(t)

it = (2 - 2(1 + b)2)pXt => x t ( r )

= [exp ( - f 2P( b2 + 2b) dt ) ] Xo

::: + 4P - 2p2(1 + b2) + 3 = 0, P(l) = 2.

Both xt(t) and P(t) are bounded continuous functions on
[0,1].

\1J2t = <t>(T) = 2Qfe2(t-T)xt(t) dt + 4x t(1)e 2(1-T)
T

\1,:J2 = i'( T) = 2Qb (T)f e2(t-T)xt( t) dt
T

+. 4x t (1) e 2(1 - T) b ( r) + 2rvt ( r ) .

When r ~ 1, <[>(r) ~ <[>(1) = 4x t(I), thus tep = 1. Further­
more,

cIl(t) = t<t>2( T) d t = 4x t(1)(1 - t) + 0(1 - z).
t

Therefore, condition (49) is satisfied:

f I ,!,2( r) d
t <1>( r) r < 00

and by Lemma 1, the operator

is linear, bounded, and can be used in the construction of
the Stackelberg strategy u = ut - Q(x - x"),

VI. CONCLUDING REMARKS

In this paper we have discussed derivation of closed-loop
Stackelberg strategies and incentive policies for a general
class of dynamic decision problems with a hierarchical
decision structure, in both discrete and continuous time.
The first set of results involve discrete-time dynamic games
in which the leader has informational advantage over the
follower, in the sense that he can observe the follower's
actions at each stage (before he acts) either perfectly or
partially. Under a feedback Stackelberg solution concept
that takes this informational advantage into account, we
have studied derivation of optimal affine policies. Further­
more, we have investigated the conditions under which
such a solution coincides with the global Stackelberg solu­
tion (cf. Section III).

A second set of results presented in this paper has
involved an analysis of existence and derivation of causal
real-time implementable global Stackelberg solutions in
dynamic games wherein the leader is allowed to use mem­
ory policies. In this context, we have treated both discrete­
time and continuous-time problems, and using a function
space approach we have solved certain special cases both
analytically and numerically (Sections II, IV, and V).

ApPENDIX A

Derivation of (71)-(72):
Since x(t) = eAtxo + f~eA(t-T)(Bu( r ) + ev( r ) dt,

(8X,Q2 X)

= t008X'(t)Q2X(t) dt

1
°Ol t

,= (8v'( r )C' + 8u'( r )B')e A(t-T)Q2X(t) d t dt
o 0

= 100

dT100dt [8u'(T)c + 8u'( T) B'] eA'(t-T)Q2X(t).
o T

Therefore, for variations Bu and Bu we have

128J2 = (8x, Q2X) + (8u, R 2u) + (8v, 82v)

= (8u, R 2u + 1OOB'eA'(t-T)Q2x(t) dt)
T

+ (8u, S2U +100

C'eA'(t-T)Q2X(t) dt)
T

!V7 J =R u+1°OB'eA'(t-T)Q x(t)dt2 u 2 2 T 2

1 J - S + 1°OC' A'(t-T)Q () d2" V7v 2 - 2V e 2X t t.
T

When u = ut , v = vt ,

1 12" <[> ( r ) = 2" V7u J2 ( u'. vt )

= R 2ut + B'e-A'T[£oo eA'tQ2eAct dt ]xo

1 12" '!' ( r ) = 2" V7v J2 ( u', vt )

= S2Ut + C'e-A'T [£00eA'tQ2eAct dt] xo'

Since

1
00 ,

/T = eAtQ2eAJ dt
T

= eAeAct,4;ll~ - 100

A'eA'tQ2eActA;1 dt
T

, 100
,= A,-le AtQ eAJIOO - A,-le AtQ eAc~ .dt

2 T 2 c'
T

it follows that

Let /0 satisfy

then

Therefore,

1
2<[>(t) = -R2R1 lB'Px t ( t ) + B'/oxt(t)

12 '!' ( t) = - 8281- Ie'Px t ( t) + c /0 x t ( t )

and relations (73) and (74) follow.
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ApPENDIX B

Derivation of Gradients (80)-(81): Note that

i 2(u, x) = (x, Q2X) +(u, R 2u)

+«x - Ax - Bu), C(x - Ax - Bu),

and consider only those x and u with their values and
variations Bx and Su satisfying

x(oo) = x(oo) = 0

~x (0) = Bx( (0) = ~x ((0) = 0

u(oo) = ~u(oo) = O.

We have, for variations Bx and Bu:

~(x,Cx) = 2(~x,Cx) = 2~00~X(t)'cx(t) dt

= 2~x'Cxlo - 2~oo~x'Cx dt

-2100

Sx'Cx dt
o

\7x( X, Cx) = - 2Cx

~(x, CBu) = 1OO~x'CBudt +100

x'CB~udt
o 0

= 100

x'CB~u dt + ~x'CBulo - 100

~x'CBit dt
o 0

\7x( X, CBu) = - CBu

\7u( X, CBu) = B'Cx.

Therefore,

1 - - - -2" \7u J2 = R 2u - B'Cx + B'CAx + B'CBu

= R 2u - B'CCv

1 - - - -2" \7x J2 = Q2X - Cx + A'CAx + CAx

~A'Cx + CBu + A'CBu

= Q2X - CCD - A'CCv

= Q2X - C+'S2V - A'C+'S2V •

At point (u t , x"), these expressions become equal to

1 () _ 1 - (t t)2" cJ> t - 2" \7u J2 U , x

= (-R 2R11B'Pxt + B'CCS11C'Pxt)(t)

= (B'CCS1-1C' - R 2R11B' )Px t ( t )

£ M(t)xt(t)

! () - ! -(t t)2 'I' t - 2 \7x J2 U , X

= (Q2Xt + C+'S2 S1 1C'Pxt

+A'C+'S2S11C'Pxt)( r )

= (Q2Xt + C+'S2S11C'PAcxt

+A'C+'S2S11C'Px t )( r)

23

= (Q + C+'S S-lC'PA2 2 1· c

+A'C+'S2S11C'p)xt ( t) = N( t )xt ( r).

This then completes the verification.
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An Improved Method for Solving Multiple
Criteria Problems Involving Discrete

Alternatives
M. MURAT KOKSALAN, MARK H. KARWAN, AND STANLEY ZIONTS

Abstract- An approach is presented for solving a discrete multiple
criteria problem. The approach asks pairwise comparisons of a decision­
maker. Under mild assumptions, the method obtains the most preferred
aitemative. The required number of pairwise comparisons is generally
modest. Our experience with the method indicates that for reasonable
underlying utility functions, a heuristic stopping rule generally yields the
most preferred alternative after several comparisons, usually fewer than 20.

I. INTRODUCTION

IN THIS PAPER we consider discrete alternative multi­
ple criteria decisionmaking for the case in which all

criteria are cardinal. We consider a problem of choosing
among alternatives where a quantity or score on a natural
scale exists to represent the performance of each alterna­
tive on each criterion. The selection of the best alternative
is complex because of the presence of multiple criteria. The
choice would be simple in two cases:

• if one of the alternatives is at least as good as every
other alternative with respect to every criterion under
consideration; or

• if we know the underlying utility function (or value
function) of the decisionmaker as a function of the
considered criteria.

In the first case the alternative that is superior in each
criterion is clearly the most preferred alternative. In the
second case the most preferred alternative may be found
by substituting the scores of each alternative into the utility
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M. M. Koksalan and M. H. Karwan are with the Department of
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function. The alternative that maximizes the utility func­
tion is the most preferred alternative. However, both of
these cases are rather rare in practice.

A number of methods have been suggested for the
solution of this problem. Many of these methods construct
a composite function to approximate an assumed underly­
ing utility function. Some of these methods may be classi­
fied as methods of conjoint analysis (see Green and
Srinivasan [1]) which require holistic evaluations among
alternatives by the decisionmaker in constructing a com­
posite function.' The burden placed on the decisionmaker
in these evaluations is generally substantial. In the decision
analysis approach, utility functions are first constructed for
each criterion. These functions are then combined into a
composite function approximating the utility function (see
Keeney and Raiffa [3]). The utility function is then used to
compare alternatives. There is a variety of approaches that
do not use a composite function. Rivett [7] uses multidi­
mensional scaling techniques and obtains a graph of alter­
natives in which the most preferred and the least preferred
alternatives are at opposite ends. The method requires
considerable input from the decisionmaker, The methods
based on outranking relations (e.g., Roy [8], Siskos [9]) also
do not require a composite function. The approach sug­
gested by Zionts [12] assumes an underlying linear utility
function and finds the best alternative by asking a number
of comparisons between pairs of alternatives, Korhonen et
ale [5] extend this approach to the case of an underlying
quasiconcave nondecreasing utility function.

The approach we suggest is based on that of Korhonen
et ale which is discussed further in Section II. In Section III
we present some theoretical results on which our method is
based. Other aspects of the approach are presented in
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