
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [University of Illinois Library]
On: 27 May 2011
Access details: Access Details: [subscription number 782450351]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

Existence and derivation of optimal affine incentive schemes for
Stackelberg games with partial information: a geometric approach
Ying-Ping Zhenga; Tamer Basara

a Decision and Control Laboratory, Coordinated Science Laboratory, University of Illinois, Urbana,
Illinois 61801, U.S.A.

To cite this Article Zheng, Ying-Ping and Basar, Tamer(1982) 'Existence and derivation of optimal affine incentive
schemes for Stackelberg games with partial information: a geometric approach', International Journal of Control, 35: 6,
997 — 1011
To link to this Article: DOI: 10.1080/00207178208922667
URL: http://dx.doi.org/10.1080/00207178208922667

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207178208922667
http://www.informaworld.com/terms-and-conditions-of-access.pdf


INT. J. CONTROL, 1982, VOL. 35, No.6, 997-1011

Existence and derivation of optimal affine incentive
schemes for Stackelberg games with partial information:
a geometric approacht

YING-PING ZHENGH and TAMER BA~ARt

Through a geometric approach, it is shown that a sufficiently large class of incentive
(Stackelberg) problems with perfect or partial dynamic information admits optimal
incentive schemes that are affine in the available information. As a byproduct of
the analysis. explicit expressions for these affine incentive schemes are obtained, and
the general results are applied to two different classes of Steckelberg game problems
with perttal dynamic information.

1. Introduction
The Stackelberg solution concept, first introduced by H. von Stackelberg

(1934, 1952) for static games, and then extended and applied to dynamic games
with open-loop information for the leader (Chen and Cruz 1972, Simaan and
Cruz 1973 a, b, Cruz 1978), has recently attracted considerable attention in
both the control and economics literature (Ho et al, 1980, Ho et al. 1981;
Basar and Selbuz 1979, Papavassilopoulos and Cruz 1979, 1980, Tolwinski
1981, Basar 1982 a, Groves and Loeb 1979, Hurwicz and Shapiro 1978,
Jennergren 1980). This recent research activity on Stackelberg games pertains
to the case when the leader has access to perfect or partial dynamic information
which involves the other decision maker's (follower's) past actions, in which
case the problem becomes tractable only through use of some indirect methods.
The main objective of the leader, in such problems, is to determine a strategy,
compatible with his available information, which will force the follower to a
certain behaviour which is considered to be mostly preferrable by the leader
(under the several informational or structural constraints imposed on the
problem). In the economics literature, such problems are known as incentive
design problems, and the' best' policy (ies) of the leader is (are) known as
optimal incentive scheme(s) (or strategies). Solutions of these incentive
(Stackelberg) problems involve, in general, two steps, namely (i) derivation of
an attainable bound on the leader's performance, and (ii) determination of an
incentive strategy that attains this bound.

A recent reference (Basar 1982 a) was addressed primarily to the former
one, and developed a general approach that led to attainable bounds for a
fairly general class of Stackelberg games under both perfect and partial dynamic
information. The main conclusion of Basar (1982 a) was that, even though
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998 Y.-P. Zheng and T. Basar

the original problem is dynamic and constitutes a highly non-trivial optimiza
tion problem if direct methods are used, the attainable performance bound can
be obtained by solving a series of non-dynamic (open-loop)optimization problems.

The present paper addresses the second question raised above, namely,
determination of 'optimal' incentive schemes (strategies) that achieve the
bounds determined in Basar (1982 a), under both perfect and partial dynamic
information; in the latter case, the observation of the leader providing the
partial dynamic information is taken to be linear in the decision variable of the
follower. Using a geometric approach, it is shown that for a sufficiently
general class of incentive (Stackelberg) problems, and under rather mild
conditions (which are precisely delineated in the paper), there exist optimal
incentive schemes that are affine in the available information. Derivation of
this set of ' appealing' incentive strategies are also discussed in the paper,
together with two examples which illustrate the general results.

The paper is organized as follows. Section 2 is devoted to the incentive
problem with perfect information for the leader. Section 3 deals with the case
when the leader has only (linear) partial information on the follower's actions;
a projection transformation is used to convert the problem to a new one which
has perfect information for the leader, so that the results of § 2 can be used.
In § 4, the results are applied to (i) linear-quadratic incentive problems defined
on general Hilbert spaces and with partial information, and (ii) linear-quadratic
differential game problems with sampled-data information, so as to obtain
(explicitly) in each case the optimal affine incentive strategies for the leader.
Finully, § 5 is devoted to some discussion on certain aspects of the general
approach presented here and on possible avenues for future research.

2. Stackelberg games with perfect dynamic information for the leader
2.1. Formulation

Adopting the notation and terminology of Busar (1982 a), we have a two
person deterministic dvnumic game problem in normal form, described by the
cost funetionals .I\(Y\, Y2) and .l 2(Y" Y2), for Player I (the leader) and Player 2
(the follower), respectivcly, where the strategies Y\ and Y2 belong to (I. priori
determined strategy spaces 1\ and 1'2' respectively. Let, the decision variables
of the leader and the follower be denoted by 1IEe and VEV, respectivelv, which
may also be eonsidered as open-loop strategies, since the dynamic game is
dcterministie and the initial state (under an appropriate interpretation) is
assumed to be given and fixed. Here, IJ (respectively, V) is the decision
space of the leader (respectively, the follower), and both I,' and V are assumed
to be appropriate Hilbert spaees. Let.l ;(11, v) also denote the cost functional of
Player I over the product Hilbert space I' x F.

Now, let us further ussu me that:

(i) The follower's objective funetional .12( 11 , v) is .strictly convex on U x V,
i.e. for any real number C, the set {(II, v) 1.1 2(11, v) ~ c} is strict.ly convex

, in {j x F.
(ii ) The complete detectubility condition (Assumption A of Basar (1982 a))

is satisfied, i.e. the leader can observe the follower's aetion(s) perfectly.
(iii) The leader is in a position to announce and enforce an incentive scheme

(.stmte(/yl y1Er1, which is a Borel-rneasurable mapping of V into U.
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Stackelberg games: a geometric approach 999

The problem faced by the leader is to find an incentive scheme which, by
also taking into account rational (cost-minimizing) responses of the follower,
leads to a most favourable performance for the leader. This performance may
be defined as the global minimum value of J , (assuming that it exists)

J,'= min J](u, v)=J](u l , v')
(u,v)eU x V

(1)

which corresponds to some specific choices of UE U and VE V (in this case, u = u I

and v=v'); or, more generally, there may exist some pair (denoted again
(u ', v')) which is chosen according to some criterion and is considered to be most
favourable to the leader. Then, the general question is: For a given pair
(U'EU, V'EV), does there exist an 'optimal' incentive strategy y]Er] under
which the best (J 2-minimizing) policy for the follower has the open-loop value
v', and a corresponding decision value for the leader is u ' 1 This question is
addressed in the next section. Note that, in this formulation, the structure of
the cost function of the leader is, in general, irrelevant, and such an incentive
strategy is indeed a Stackelberg strategy for the leader under the given infor
mation structure.

2.2. Optimal affine incentive strategies-their existence and computation

We call an incentive strategy y]Er1 affine, if it is totally characterized by an
affine relation of the form

U=Yl(V)=UO-QV (2)

where Q is a linear operator mapping V into U. If the desired' open-loop'
solution by the leader is (u ', v'), this takes the form

It = Yl(V) =u'- Q(v- v') (3)

which clearly has the open-loop value u = u ' whenever the follower can be forced
to the decision value v = v'. Affine incentive schemes of the form (3) (for
varying Q: V--->U-which constitute a proper subset of r ,) are particularly
appealing because they are structurally simple, can easily be computed and
implemented, and they do not have the explicit threat property that other
discontinuous Stackelberg strategies possess (i.e. they provide rather soft
constraints for the follower's minimization problem). Moreover, for a general
class ofproblems, affine incentive schemes induce the desired behaviour on the
follower, as will be shown below.

Towards this end, let us first note that the set

is strictly convex, with (u l , VI) as a boundary point. Hence, there must exist a
supporting hyperplane ITo, passing through (u ', v'), provided that 11, contains
an interior point (Luenberger 1969, Balakrishnan 1976). The latter condition
does not impose any restriction on the problem, because if an interior point
does not exist, (u ', v') globally minimizes J 2, and hence Yl(V)=U

'
becomes

trivially an optimal incentive strategy. If we can find an operator Q such
that the submanifold defined by (3) lies on ITo" then the set of admissible
decision pairs (11" v), defined by the incentive scheme 1t = u '- Q(v - VI), has

2Q2
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1000 Y.-P. Zheng and T. Basar

only the unique common point (u ', v') with Ql' Therefore, -the only solution
to the follower's optimization problem is exactly v'; in other words, the
strategy u =u '- Q(v - VI) solves the incentive problem.

In order to ensure that such an operator Q exists, we further assume that

(iv) J 2('U, v) is Frechet-differentiable on U x V.
Then, the equation of the supporting hyperplane no, may be

written as

<'il"J2(UI , v'), It-U I>+<'il,,J2(U
', v'), v-v'>=O (4)

where 'il"J2(U', VI)EU* is the gradient of J 2 with respect to u, evaluated
at (lt l, v'), and 'ilvJ2(lt

l, V')EV* is the gradient of J 2 with respect to v,
evaluated also at (u ', v').

Throughout this paper, when the superscript * is used in conjunction with
a linear space (such as U, V) or a linear operator (such as Q), it stands for the
, adjoint '.

Lemma 1

Let X and Y be Banach spaces with given elements XoEX, YoEY, xo;60.
Then there exists a continuous linear operator Q such that Qxo=Yo.

Proo]

Define a functional I( . ) on the subspace {<Xxo, <XER}cX

1(<Xxo)= <x, 11111 = 1/llxoll < 00 (5)

By the Hahn-Banach theorem (Luenberger 1969), I can be extended to the
whole space X, and still retain its original norm. Denote this new functional
again by I( . ), and introduce the operator Q(x) = I(x)yo, which maps X into Y.
,It is obvious that Q is linear and bounded (thereby continuous), with ,IIQII =

IIYoll/llxoll. Moreover, Q(xo)=/(xo)Yo=Yo' which completes the proof of the
lemma. []

Remark 1

When X is a Hilbert space, we may define

<xo, x>
Q(x)=~yo (6)

which is one possible choice, for the operator Q. In fact, there exist many
different possibilities, especially if we are operating in infinite dimensional
spaces. []

By Lemma 1, and under the assumption that.'i7"J2(u l , vl);60, there exists a
bounded linear operator Q* : U*-. v* such that

(7)

(Recall that 'il"J 2(u ' , V')EU* and'il.J2(ul , V')EV*.) Now consider the incentive
strategy (3) with Q determined by (7). 'Taking the inner product of u-lt'+
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Stackelberg games: a geometric approach 1001

Q(v - Vi) with VJ2(U', Vi), we obtain

0= <VJ2(UI, Vi), u-u'+Q(v-vl)

= <VJ2(U', Vi), u-u l)+<VuJ2(U I , Vi), Q(v-vl)

= <VJ2(U I , Vi), u-u')+<Q*VJ2(U', Vi), V-Vi)

= <V"J2(U I , Vi), u-u l)+<VJ2(U I, v'), V-Vi)

which leads to the conclusion that (3) lies on the hyperplane (4) and passes
through (u', v')-thereby providing a solution to the incentive problem. We
have thus verified the following result.

(3)

o
u= Yl(V) = u'- Q(v -Vi)

where the linear operator Q: V-.U is chosen according to (7).

Proposition 1

For the incentive problem of § 2.1, if the set QI~{(U,V)EU x VIJ2(u, v),;:;
J 2(U I , Vi)} is strictly convex, and J 2(U, v) is Frechet-differentiable with
VJ2(1t l, vl),eO, there exists an optimal incentive strategy for the leader, in the
form·

The requirement of strict convexity may be replaced by the following milder
condition without affecting the validity of the result : Q I is convex in V x V
and locally strictly convex at the boundary point (u l , Vi). Furthermore, it is
noteworthy that the requirement VJ2(U I , v'),eO simply says that the cost
functional of the follower has to be locally sensitive to changes in the value
of the decision variable of the leader around the operating point (u', Vi).

Remark 2

In the finite-dimensional case, say V = R», V = s», VJ 2(U', v') and
VuJ2(U I , v') may be taken as column vectors of dimensions nand m, respectively,
and the operator Q becomes an n x m matrix, satisfying the equation

[V"J2(U', v')]'Q = [V"J2(U', Vi)]' (8)

where' denotes a transpose. As long as VuJ2(U I , v'),e 0, there always exists
such a matrix Q, one possible candidate being

Q= V"J2(UI , V I )[V"J2(UI, v l)]'jIIV"J2(n l, vl )112 0

Remark 3

Adopting the terminology used in Ho ei al. (1980), Proposition 1 provides a
rather mild sufficient condition for linear-incentive-controllability (I.i.c.) for a
large class of Stackelberg (incentive) problems. It also proposes a general
approach to determine the desired solution, which reduces the original problem
to one of computation of gradients in Hilbert spaces and choosing an operator Q
which satisfies a given linear relation. 0

3. Stackelberg games with partial dynamic information for the leader
3.1. Problem formulation

Consider the Stackelberg game problem of § 2.1, with the only difference
now being that the leader has access to only partial information on the follower's
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1002 Y.-P. Zheng and T. Basar

actions, as in Basar (1982 a); but here this partial observation is assumed to be
linear. More specifically, the leader's information space Y is a Hilbert space
comprising observations of the form y=Nv, where N is a linear bounded
operator mapping V into Y. Furthermore, N is not necessarily invertible and
it has a non-trivial null space, Ker N; i.e. there exists some v# 0 such that
Nv = O. This implies that the leader cannot differentiate between two
decisions VI and V z of the follower, if VI -vzEKer N. We finally assume, for the
sake of simplicity in exposition, but without any loss of generality, that N has
full range, that is, for any strongly positive linear operator F > 0, the property
N FN* > 0 holds.

The set f l of all admissible (incentive) strategies for the leader is now
defined as the collection of all Borel-measurable mappings YI: Y-+U, i.e.

(9)

Later we shall see that a: much smaller subset of f I, comprising only affine
incentive strategies of the form

(10)

constitutes a sufficiently rich class for the incentive problem under con
.sideration.

To complete the description of the problem, we note that, for each fixed
YIEf l' the follower will seek a solution vy , *EV to the minimization problem

minJZ(YI(Nv), v) =Jz(YI(Nvy , *), vy,*)
VEV

as a result of which the leader will incur a cost of

JI*(Ytl=JI(YI(Nvy,*), vy,*)

We will call an incentive strategy y'IEfI optimal, and say that it solves the
incentive (Stackelberg) problem, if it minimizes JI*(Yt). .

This problem has been considered before in Basar (1982 a), where a tight
lower bound (higher than the global minimum of JI(u, v) over U x V) has been
obtained for J 1*(YIO). In the sequel, we show that this bound is achievable,
under fairly general conditions, in the class of affine incentive strategies of the
form (10), and that an optimum affine incentive strategy can be determined in
explicit form.

3.2. A related' projected' problem with perfect information

Following the discussion of Basar (1982 a), we first note that, for fixed
yEY and UEU, a rational policy for the follower is to minimize Jz(u, v) in the
subspace determined by y=Nv. Since J z is strictly convex on this subspace,
the optimizing solution for v will be unique, whenever it exists. (If such a

.solution does not exist for all values of (u, Y)EU x Y, we may restrict attention
to a subspace of U x Y for which a v*(u, y) exists. If no such subspace can be
found, then the original problem does not admit a Stackelberg solution.)

Denote the solution by v*(u, y). Clearly, y=Nv*(u, y), and hence there
exists a one-to-one correspondence between y and v*, for every fixed UEU. As a
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Stackelberq games: a geometric approach 1003

result of this optimization, the leader will incur a cost of J1(u, v*(u, y)) and the
follower will incur J 2(u, v*(u, y)), both of which depend only on u and y.
Denote them by

J1(u, y) g,J1(u" v*(u, y))

J 2(u , y) g,J2(u, v*(u, y))

(11 a)

(11 b)

The best performance the leader can achieve is clearly the global minimum of
J 1 over U x Y. We now show, in the sequel, that the theory of the previous
section can be used to establish the existence of an affine incentive strategy that
achieves this bound. Towards this end, we first verify that J 2(U, y) is strictly
convex over U x Y,

Lemma 2
The functional J 2(u , y) defined by (11 b) is strictly convex over U x Y,

provided that J 2(U, v) is strictly convex over U x V.

Proof
Take two arbitrary points (u 1, Y1)' (u2, Y2)EU x Y, and an <XE(O, 1). Let

U= <XU1+(1- <X)U2EU

fi= <XY1 + (1- <X)Y2EY

Then we have the following sequence of inequalities

J2(U, fi)=J2(u, v*(u, fi))

,;;J 2[U, <xv*(u 1' Yd + (1 - <x)v*(1t 2, Y.)]

<ocJ2[U1, v*(ui> Y1)]+(1-<x)J2[U2, v*(u2, Y2)]

= <xJ.(ui> Yd + (1- <x)J2(U., Y.)

(12 a)

(12 b)

(12 c)

Here, (12 a) follows since (i) v*(u, fi) minimizes J 2(u, v) over V subject to
fi=Nv and for fixed UEU, and (ii) vg,<Xv*(u1,Y1)+(1-<X)v*(u2, Y2)EV and
satisfies the constraint fi = n». The strict inequality (12 b), on the other hand,
follows from strict convexity of J 2(u , v) over U x V. Finally, (12 c) follows
from the definition of J 2' This, then, verifies that J 2 is strictly convex. 0

Therefore we now have a new' projected' incentive (Stackelberg) problem
with perfect information (for the leader), wherein the cost functionals are
J1(u, y), J 2(u, y), and y is the decision variable of the follower. This incentive
problem is of the type discussed in § 2, for which we let Y10 denote an optimal
incentive strategy. Then, we have the following equivalence between the new
, projected' incentive problem, and the original one formulated in § 3.1.

Proposition 2

An incentive strategy Y1°Er 1 (i.e. u = Y1O(y)) solves the' projected' incentive
problem with cost functionals J1(u, y), J 2(u, y), and with perfect information,
if and only if it solves the' original' incentive problem with partial information,
as formulated in § 3.1.
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1004 Y.-P. Zheng and T. BCL§ar

Step 2.

Step 3.

Proof
This follows the same lines as the proof of Theorem 1 in Basar (1982 a) and

is therefore omitted. 0

3.3. Solution of the incentive problem with partial information

In § 3.2, the original incentive problem with partial information has been
transformed into an equivalent' projected' problem with perfect information.
Hence, the results of § 2.2 can readily be used to solve this problem, since we
have already established (in Lemma 2) strict convexity ofthe new cost func
tional J 2(U, y) on U x y.. Accordingly, derivation of an optimal affine incentive
strategy for the leader would follow the following steps.

Step 1. For fixed ueU and yeY, minimize J 2(u , v) over veV and subject to
y=Nv. Denote the solution by v=v*(u, y). (This solution exists
uniquely, since the cost functional is strictly convex and the constraint
is Iinear.)

Transform J 1 and J 2 into J1 and J2 , respectively, via (11 a) and (11 b).

Determine the global minimum of J 1(u, y) over (u, y)e U x Y, provided
that it exists, and denote the solution by (u', y'). If such a solution
does not exist, let (1~', y') denote a pair of values which seems to be
most favourable to the leader; then Steps 4 and 5 in the sequel still

. determine an optimal incentive strategy.

Step 4. By Proposition 2, the set Q,f!{(u, y)IJ2(u, y)~J2'f!J2(U', y')} is
strictly convex, with (u', y') as a supporting point. Hence, there
exists a supporting hyperplane for Q" passing through (u', y').
Assume that J 2 is Freehet-differentiable in U x Y. (This condition,
which places some indirect restrictions on J 2, seems to be inevitable
if we seek to obtain an explicit expression for the optimal affine
incentive strategy. OUf subsequent analysis (in § 4) indicates that
J 2 is indeed Freohet-differentiable for two important classes of
incentive problems.) Then the supporting hyperplane is uniquely
defined by

<VJz(u', y'), u-u')+<VyJ2(u', y'), y-y')=O (13)

Step 5. If VuJ2(U', y') # 0 (in space U*), there exists an operator Q* : U*- Y*
such that

Then, the optimal affine incentive strategy is given by

u= Y1(y) =u' - Q(y-y')

(14)

(15)

which constitutes a sub-hyperplane of the supporting hyperplane (13).
Note that, since the strategy (15) has a unique point (u', y') in common with

the set Q" the problem of minimizing J 2(u , y)'subject to (15) has the unique
solution (1~', y'), and by Proposition 2 the problem of minimizing J 2(u , v)
subject to (15) and the linear constraint y;=Nv has the solution (u', v') with
Nv'=y'. Therefore, the incentive strategy (15) indeed induces the desired
behaviour on the follower.
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Stackelberg games: a geometric approach 1005

(18)

(19)

(20 a)

(20 b)

(20 c)

We have thus established existence of an optimal affine incentive strategy
for the leader, in a rather broad class of Stackelberg game problems with partial
information, as summarized below.

Proposition 3

For the incentive (Stackelberg) game with partial information, as formulated
in § 3.1, there exists an optimal affine incentive strategy for the leader, deter
mined at Step 5 of the foregoing procedure, provided that

(i) J 2(u , v) is strictly convex on U x V, and there exists a v*: U x Y --->V
that minimizes J 2 over V and subject to y=Nv

(ii) J1(u , y) (as defined by (11 a)) admits a global minimum in U x Y
(iii) J 2(u , y) (as defined by (11 b)) is Frechet-differentiable in U x y
(iv) VuJ2(U', yt) does not vanish. 0

4. Applications
4.1. Linear-quadratic Stackelberq games on Hilbert spaces

As a first application of the results of the previous section, we consider the
class of linear-quadratic games treated in § 5 of Basar (1982 a).

Denote the leader's decision variable by U 1 and the follower's decision
variable by U 2 (instead of U and v), which belong to Hilbert spaces U1 and U2'

respectively. The cost functional of Player i (i = 1, 2) is

Ji(UV u2)= L <Uk' A k/ Uj>+ L <Uj , 1/> (16)
k.i=l,2 j=l,2

where Ail are linear bounded operators, Aiik are strongly positive, A j / = 0 for
i#j, I/EUj are known, and

Aiii - lAi/(A j/)-IA i/* > 0, i, j = 1, 2, i # j (17)

which make both J 1 and J 2 strictly convex on U1 x U2' The partial information
of the leader is denoted by

where yE Y, a Hilbert space, and the linear operator N: U --->Y is bounded
and has fuJI range.

A tight attainable bound for the leader's performance in this game has been
obtained in Basar (1982 a). In the sequel we show, by following Steps 1-5 of
§ 3.3, that there indeed .exists an affine incentive strategy that achieves this
bound..

Step 1

For fixed (u, y)EU 1 X Y, the unique minimum of J 2 over U 2EU 2 and subject
to y =N u2 is attained by (Basar 1982 a)

u 2= By + CUI + Dl22 ~ u2*(uv y)

where the bounded linear operators B: Y --->U2; C: U1--->U2; D: U2--->U 2

are defined by B~(A222)-IN*[N(A222)-IN*]-1

C~ -[I -BN](A222)-IA 212

D ~ - HI - BN](A222)-1
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1006 Y.-P. Zheng and T. Basar

where

Step 2

Substitution of (19) into J;(u" u 2 ) leads to

J,(u" y) = (u" (Au' + A,l C +C*A 22' C)u,) + (u" (A,l B + 2C*A 2l B)y)

+ (u" I,') + (y, B*A 22' By) + (u" 2(A,l D + C* A 22'D)122)
+ (u" C*12') + (y, (2B* A 2l D+ B*)12')

+ (Dl22, A 22' D122)+ (DI22, ll) (21 a)

J 2(u" y) = (u" (A U2 +C*A 212+ C*A 222 C)u,) + (u" (2C* A 222 B + A 2,2* B)y)

+ (u" 1,2)+ (y, B*A 222 By) + (u" (A 2,2* D + 2C*A 222 D +C*)122)
+ (y, (2B* A 222 D+ B*)122)+ (122, (D* A 222 D+ D*)122) (21 b)

Note that both of these expressions are strictly convex and Frechet-
differentiable on V, x Y.

Step 3
Minimization of J,(u, y) over V, x Y leads to the unique solution (Basar

1982 a) yt = K-'l (22 a)

u,'= -K,-'(KzY+1,) (22 b)

K, ~2(Au'+A'2'C+C*A 22' C) (23 a)

K2~2(A,l B+C*A22B ) (23 b)

" ~l,'+ (2A 12' D+ 2C*A 2l D)122 + C*12' (23 c)

I ~K2* K,-' 1,- 2(B*A 22' D)122- B*ll (23 d)

K~2B*A22'B-K2*K,-'K2 (23e)

Step 4

The supporting hyperplane of the convex set

Q,={(u" y)IJ2(u" y)~J2(U,t, y')}

where

at the point (u, t, y') is

(Vu ,J2 ' , u,-u,t)+(Vi2t, y-yt)=O

v J t- 2(A 2 +C* A 2 +C*A 2 C)u ' + (2C*A 2 B + A 2* B)y'"1 2 - 11 21 22 1 22 21

+I,2+(A2,2* D+2C* A 222 D+C*)122

VJ'-2B*A 2By'+(B*A 2+2B*A 2C)U t
11 2 - 22 21 22 1

+ (2B* A 222 D + B*)122

(24)

(25 a)

(25 b)

Step 5
Assume that VU ,J2'#0. Then, an optimal affine incentive relation that

achieves the bound J,(u,', y') is

u,=y,(y)=u,t_Q(y-y') (26)

'where the linear bounded operator Q: Y-> V, satisfies the relation

Q*[VU.J2'] = VVJ2t (27)
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Stackelberg games: a geometric approach 1007

with Q* defined as the adjoint of Q. One possible solution to (27) is

Q* .)-<V J' .) vyJ 2'
( - U, 2' <V J' V j ')

UI 2' UI 2

(28)

(30)

(29). _ VU ,J 2 ' vJ'·
Q( )- <V,..12" VUI2J ') < y 2' )

Hence, an optimal incentive (Stackelberg) strategy for the leader is

( )_, VUlJ2' <V J ' ')
Yl Y -Ul -<V J' V J ') u 2' y-y

UI 2' ttl 2

Of course, there are several other optimal affine incentive strategies for the
leader, since (27) admits, in general, multiple solutions.

whose adjoint is

4.2. A differential game with sampled state measurements

Another special class of problems to which the results of § 3 are applicable
is the class of linear-quadratic differential game problems in which the leader
has access to sampled-data state information, as described in Basar (1981 a,
§ 4). The state evolves according to

x=A(t)x+Bl(t)u+B2(t)v; x(O)=xo, tE[to,tf]

and the cost functionals are

"Jl(u, v)=!x'(tf)Klfx(tf)+! I [x'Ql(t)x+u'u+v'R1(t)v] dt

"
"J 2(u, v)=!x'(tf)K2fx(tf)+! J [x'Q2(t)x+u'R2(t)u+v'v] dt

"
where Kif;;' 0, Qi;;' 0, R i;;, 0, i = 1, 2, and all matrices have continuous entries.

The leader's obeervations are the values of state x at sampled times
to, t l, ... , t k = tf; that is, the values x(to)= xo, X(tl) = Xl' ... , X(tk _ l) = Xk _ l'
X(tf)=Xf=Xk •

Because of the linearity of the dynamic process

h ti

Xi = </>(ti, to)xo+ J </>(ti , T)Blu( T) d-r + f </>(ti, T)B2v(T) d-r, i = 1, ... , k
to to

where </>(t, T) is the state transition matrix of the linear system.
Since xoa nd U(T) are assumed to be known to the leader, the observations

are equivalent to

I,

Y,= J </>(t" T)B2v(T) dT~Ni[v], i= 1, ... , k
I.

where N i [ · ] are linear, bounded and causal operators.
Derivation of an achievable lower bound J l * on the leader's cost function,

and the open-loop values u' and Vi of the leader's and follower's corresponding
strategies, as well as the derivation of corresponding optimal values of the state
at sampling times, have been discussed in Basar (1981 a). The results of § 3
indicate, however, that there may exist (more appealing) affine strategies for
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1008 Y.-P. Zheng and T. Basar

the leader, which achieve the same bound and lead to the same optimal values
of the state at sampling times. We now illustrate this via a numerical example.

Consider the first-order system X= -x+u+v, tE[0,2J, x(O)=xo known
and x(2) free, where vEL 2[0, IJ is the follower's control action and uEL2[1, 2J is
the leader's control action. Note that they act on different time intervals, so
that the causality condition is satisfied automatically.

Assume that the leader's cost functional is

2

J I = ! J (x2+2u2+v2)dt
o

and the follower's cost functional is

2

J 2 =! J (x 2 +v2
) dt

o

The leader is assumed to have the information on state x(t) only at t = 1, i.e.

x(l)=xl · Sincle xl=exp(-I) [xo+ iexP(t)V(t)dtJ~eXP(-I)[XO+Y]' we

may take Y = J exp (t) v(t) dt = N[v(t)] as the observation of the leader.
o

Let us now apply the five steps (of derivation) of § 3.3 to this problem.

Step 1

For fixed u' and y (i.e. XI) minimize J 2 with respect to v. By standard
techniques of optimal control, the minimizing solution is obtained to be

v*(t, y) = (0'03224xo+0·09506y) exp (y2t)

+ (0' 96776xo- 0·09506y) exp ( - y2t)

Note that, here, v*(t, y) is independent of u, and depends only on Xo and y.

Step 2

Substitute v*(t, y) into J, to obtain the expressions for J i

J I = O·20249xo
2 + O'08I92xoY+ 0'I7542y2

2 , 2

+! J [exp (t - 1) XI + J exp (t - s) u(s) dS]2dt +! J 2u2(t) dt
I I I

J 2= O·20249x02+ O·08I92xoY + 0'OI7542y2+ I'59726x12

X 2
+.2 J u(t)[exp (3-t)-exp (t-I)] dt

2 I .

2[ , J2+t! {exp(t-s)u(s)ds dt

Step 3

Minimize J I with respect to u and y. By taking the gradients of J I with
respect to u(t) and y in function space and equating them to zero, we obtain

u' = (0'00469 exp h/I'5(t - I)} - 0·05430 exp {- yl-5(t - I)}) Xo

y'= -0'33754xo
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Stackelberg games: a geometric approach 1009

Step 4

Calculate the values of the gradients of J 2 at the point (u l, yl)

\lyJ 2'= \lyJ2(u', yl)=0'23320xo

\lJ21= \luJ2(U', yl)

= {l'99295 exp ( - t) - 0·03650 exp (t)

- 0·00276 exp h/1'5t) +0·36957 exp (- y1'5t)}xo

Step 5

The supporting hyperplane of the set {(u, y)IJ2(u, y) ,;;;.J2(UI, yl)} is given by

2

\lyJ/[y_yl]+ J \lJ2'[U(t)-ul(t)] dt=O
1

(31 )

In order to find a 1t = Yl(y) that satisfies this equation, let u(t) = ul(t) + tl(y),
where tl.(y) is independent of t. Then tl satisfies

whereby

2

O'23320xo[y - y'] + tlxo J 'P'(t) dt = 0
1

0'23320(y-y')
tl= - 2 -0'69168(y-yl)

J 'P'(t) dt
1

=ul -

Hence, an optimal incentive strategy is

u= Yl(y) =ul- 0'69168(y - yl)

where ul(t) and y' were obtained at Step 3. As another alternative, let

where \I u and \Iyare the shorthand notations for \IJ 2' and \I yJ2' respectively.
Then, another optimal incentive strategy would be

U=Yl(y)=UI_Q[y_yl]=UI_II;uuI12 \ly(y_yl)

'P'(t)
2 [0'33754(y_yl)]

J 'P'2(t) dt
1

= u l- 0'33200'P'(t)[y - yl]

which is of a different form. In fact, there are several other possibilities, as can
be seen from (31), all of which lead to the tight lower bound J1(UI, yl). A
further selection from this set of optimum incentive strategies may be made, in
accordance with some additional design requirements.
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1010 Y.-P. Zheng and T. Basar

5. Concluding remarks
This paper has developed a geometric approach to solve a sufficiently

general class of incentive decision problems in which one of the decision makers
(the leader) announces an incentive strategy in order to induce a certain
behaviour on the other decision maker (the follower). The leader is assumed
to have either (i) 'perfect information on the follower's actions or (ii) partial
information provided by a linear observation. In either case, and when the
cost functional of the follower is strictly convex, it is shown under rather mild
conditions that there exists an affine 'optimal' incentive strategy for the
leader. As a byproduct of our analysis, we have also obtained a computational
scheme that yields the linear operator associated with the affine strategy.
The two examples included in § 4 illustrated the' applicability of this general
approach and derivation of affine optimal incentive, strategies.

The general form of the incentive strategy, which is either (i) u =u'- Q(v - v')
or (ii) u =u'- Q(y - y'), depending on whether we have perfect or partial
information, may, at first glance, lead to the conclusion that our analysis and
results are valid only if the leader acts after the follower does in the decision
process. However, this is not totally true, because the existence of several
degrees of freedom inherent in the choice of the linear operator Q (which only
has to satisfy eqn. (14)) makes this analysis a viable one also for dynamic
decision processes wherein the actions of the two decision makers are temporally
intermingled. Hence, it is in general possible to choose this linear operator
in a way that is compatible with the 'control-information dependence'
requirements (such as causality) of the dynamic game under consideration,
which definitely allows the decision makers to act more than once in the
decision process. Two such classes of problems are the discrete-time dynamic
games with linear state equation and strictly convex cost functionals (such as
those considered in Basar and Selbuz (1979)), and the continuous-time differen
tial games with linear state equation, strictly convex cost functionals and
sampled-data information (such as the ones treated in Basar (1981 a), and also
briefly discussed in § 4.2). Precise formulations of such 'information
structural' restraints, and the derivation of causal linear operators Q corn
patible with these requirements, will be undertaken in future publications. We
also expect extension of these results to hierarchical dynamic decision problems
with more than two players, in the framework of the model (and along the lines
of the analyses) of Basar (1981 b, 1982 b).
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