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Al~traet--This paper considers noncooperative equilibria of loop information structure, the optimal responses will almost 
three-player dynamic games with three levels of hierarchy in always be nonunique. This difficulty is of course circumvented 
decision making. In this context, first a general definition of a if one confines the analysis to open-loop strategy spaces 
hierarchical equilibrium solution is given, which also accounts (Medanic and Radojevic, 1978), or to linear feedback strategy 
for nonunique responses of the players who are not at the top spaces (Medanic, 1977) in linear-quadratic games; but if the 
of the hierarchy. Then, a general theorem is proven which players have access to closed-loop information structure, a 
provides a set of sufficient conditions for a triple of strategies more general definition that also accounts for nonunique 
to be in hierarchical equilibrium. When applied to linear- responses is unavoidable. Such a general definition has in fact 
quadratic games, this theorem provides conditions under been given in Bas, ar and Selbuz (1979) within the context of 
which there exists a linear one-step memory strategy for the dynamic games with only two-levels of hierarchy in decision 
player (say, ~1) at the top of the hierarchy, which forces the making, and in this paper we first extend this equilibrium 
other two players to act in such a way so as to jointly solution concept to three levels of hierarchy. Then, for the 
minimize the cost function of ~1. Furthermore, there exists a general class of three-player games with three levels of 
linear one-step memory strategy for the second-level player hierarchy, we prove a general theorem (Theorem 1) which 
(say, ~2), which forces the remaining player to jointly provides a set of sufficient conditions for a triple of strategies 
minimize the cost function of ~2 under the declared to be in hierarchical equilibrium. 
equilibrium strategy of ~1. A numerical example included in Inherent in the suffficiency conditions of Theorem 1 is an 
the paper illustrates the results and the convergence property important feature of the hierarchical equilibrium solution that 
of the equilibrium strategies, as the number of stages in the is akin to the one observed in Ba~ar and Selbuz (1979) for the 
game becomes arbitrarily large, class of two-player games. Specifically, by announcing an 

appropriate strategy, the player at the top of the hierarchy 
can achieve an optimal cost level that is equal to the global 

1. Introduction minimum of his cost function, and moreover he can force the 
IN TWO-PLAYER dynamic games, existence of a hierarchy in other two players to collectively minimize the cost function of 
decision making implies that one of the players is in a the player at the second level of hierarchy (under the declared 
position to determine his strategy ahead of time, announce it strategy of the leader). We, then, consider a specific 
and enforce it on the other player; therefore, the Stackelberg application of Theorem 1 to linear-quadratic dynamic games, 
solution is the only possible hierarchical equilibrium solution and obtain recursive expressions for the hierarchical 
applicable in such decision problems. In M-player games with equilibrium strategies which are of the one-step-memory type 
more than two levels of hierarchy, however, several different for the first two players (see Theorem 2). A numerical 
possibilities emerge as to the type of hierarchical equilibrium example included in the paper illustrates the result of 
solution concept to be adopted. We might, for example, have Theorem 2 and the convergence properties of the equilibrium 
a linear hierarchy, in which case the players announce their strategies as the number of stages in the game becomes 
strategies in a predetermined order, but one at a time; or we arbitrarily large. 
might have the situation in which some of the players are 
grouped together and they announce their strategies at the 2. The three-level hierarchical equilibrium solution 
same level of hierarchy either cooperatively or in a To introduce the hierachical equilibrium solution concept 
noncooperative fashion under the Nash equilibrium solution for three-player dynamic games with three levels of hierarchy, 
concept. For an account of the available results in the let us first stipulate that (a) Player 1 (~1) is in a position to 
literature on multi-level hierarchical equilibrium solutions, the announce his strategy ahead of time and enforce it on the 
reader is referred to a recent survey article by Cruz (1978). other two players, and (b) ~2, in view of the announced 

In dynamic games with multi-levels of hierarchy, strategy of ~1, has the ability to dictate his strategy on ~3 
hierarchical equilibrium solution concepts have been who only thereafter decides on his optimizing strategy. Let us 
introduced heretofore as extensions of the Stackelberg denote the index set {1,2,3} by ./if, the strategy space of ~ i  
solution concept (which is applicable to two-player games) by Fi (ie.Ar), and a typical element of F~ by ~ (iE.N'). 
and under the stipulation that the rational reaction of each 
follower to every announced strategy(ies) of the leader(s) is Furthermore, for each triple {TifF1, y2eF2, yaeF3}, let 

Ji0q,~'2,~'3) denote the corresponding unique loss incurred to 
unique--in spite of the fact that, under the general closed- ~)i, with the function Ji to be referred to as the cost function 

of ~)i ( i~X) ,  hereafter. In this general framework, the 
,t)~^_:..~.~ ~r~ A_.:, ~aoa . . . .  ~ _̂.~ n ~^_,^_t._. ~ao,~ . r ~ . ^  concept of a hierarchical equilibrium strategy for ~)1 can now 
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Si(•'l ) = t  (¢2 '¢3)EF2 X I-3:Ji(71, ¢2, ~3 ) 
where 

k 

R2(Yl)~{ ¢ e 1-2:~,3 e R3 ,~,lsup ;¢) J2(71, ¢,73) =min:,2 ~r2 ~3min Ji(71' 72' 73 ) } , r 3  i =  1,2, t5a~ 

V72eF2~ (2a) and introduce a subset ~2(71) of $2(71 ) by __< sup J2 (71, 72,73) 
)3 ER3(fl ;~2 ) ) 

~2 (71) = { (72, 73) E $2 (71):73 ~ R3(7l ; 72 )}. (5b) 
and 

Theorem I. Let there exist a 7~ ~ F~ such that: A 
R3(71 : 72 )=  {~ E F3 : J3 (71,72, ¢) ~ J3 (71, 72, 73) 

(i) ~2(7") is nonempty and for every pair (¢2,¢3)e~2(7") 

V73 • F 3 }. (2b) 
sup J2 (7',  ¢2, 73)-- J(71, ¢2, ¢3 ) 

73~R3( i ~ : 

Any 7~•R2(7")  is a corresponding equilibrium strategy for 
,~2, and any "* ~'*" * ~3 • R3 (i 1,72 ) is an equilibrium strategy for ~ 3  (ii) $2() '*)~ $1(7]'), and; 
corresponding to the stategy pair (7";7"). [ ]  (iii) for every (¢2, ¢3) • Sl (7"), 7" minimizes J~ (~q, ¢2, ¢3) 

over F~. Then, 7T is a hierarchical equilibrium strategy for 
The foregoing definition of a hierarchical equilibrium ~ 1 ;  and given any pair (7*,7*)•~2(7*), 7* is a corresponding 

strategy also takes into account possible nonunique responses equilibrium strategy for ~ 2  and ~,~ is an equilibrium strategy 
of the 'following' players, and in that respect it can be for 9~3 corresponding to the pair (7]~,y~'). 

considered as a natural extension of Definition 1 in Basar and Proof. We first note that, since ~2(2'*) is not empty, there 
Selbuz (1979) to fit the present context. For a given dynamic exists a pair {~2 • F2, ~3 • R3(7";¢2)} which globally minimizes 
game problem, it is usually the case that the sets R2(71) and J2 (Y*, 72, 73 ) over F2 x F3, and furthermore by construction 
R3(71;72 ) are not singletons for any 71 ~F~ and 72•F2,  since every element pair in ~2(7") has such a property. Then, under 
even if the cost functions are strictly convex in the control condition (i), we have the set equivalence 
variables, this feature ceases to hold true when they are 
expressed in terms of the strategies of the players. This, ~2(, 1)--{(,~2. , 3 ) •F2  x 1-'3:72•R2(7" ) 
therefore, makes it necessary that a proper definition of ~,*., ~ ,  
hierarchical equilibrium solution also account for nonunique and 73 • R3(: I,  )2)J ( )" 
responses of the players, as in Definition 1 above. For the Now assume, to the contrary, that 7* is not a hierarchical 
restricted class of problems for which the sets (2a) and (2b) equilibrium strategy. Then, we have from (1), by also making 
are singletons, however, the hierarchical equilibrium strategy use of the preceding set equivalence relation 
of 9~1 naturally satisfies a simpler set of relations as 
summarized below in Proposition 1. d * <  SU E J1(7]~,72,73). 

Proposition 1. For the class of three-player dynamic games ~ , 2 . ~ . ~ s ~  
covered by Definition 1, if R2(Tt ) and R3(7~;72) are 
singletons, then there exist unique mappings T 2 : F ~ F  2 and Furthermore, since ,~2(7")cS~(7") by (ii), we have the looser 
T3:FI × F2~F3  defined by bound 

Jl('~ I , /2 , ,3}  J217,, T2~'~, T3 ('f~, T271 )]-<.]217~, 72, T3()'~, 72)] J~ '<  sup '* . . . .  

'V'y2 • F 2 (3a) which is however equal to the global minimum of J~ over F~ 
× T 2 × F 3 by (iii) and the definition of S~(. ). But since J]' is 

and also bounded from below by the same quantity, it follows 
that the preceding inequalities will have to be replaced by 

J3171,72, T3(),l,72)]~J3(71,72,73) V73eF 3. (3b) equalities, thereby implying that 7* is indeed a hierarchical 
equilibrium strategy for ,~1. Finally, equilibrium property of 

Furthermore, the hierarchical equilibrium strategy 7*~Fa of any element of g2(Y*) follows from equation (*), in view of 
~1  satisfies Definition 1. [ ]  

• * .,* JI[Yl ,  T271, T3(~ , T271")] < J l  [7~, T271, T3(7~, T2yl )] R e m a r k  I. Unde r  the sufficiency condi t ions  of Theorem 1, 
the strategy 7]" of ~1  forces the other two players to play in 

V7~ e f t .  (4) such a way so as also to globally minimize the cost function 
of ~ l .  The equilibrium strategy 7~ of ~2,  on the other hand, 

[]  has the property that it forces ~ 3  also to jointly minimize 

It is in general not possible to determine the sets R2(71 ) J2(,1. ,2,~3)" [ ]  
and R3(7~;72) explicitly for all possible elements 7~ e F:,  We now apply Theorem 1 to three-player linear-quadratic 
72 •F2,  unless F 1 and F 2 happen to be the class of open-loop dynamic games defined in discrete time, and obtain explicit 
strategies--which is tantamount  to having static games. This equations and conditions for the equilibrium strategies to 
then clearly rules out the possibility of any direct approach satisfy. 
that would yield the hierarchical equilibrium solution in 
dynamic games, and one has to resort to indirect methods 
and derivations. 3. Three player linear-quadratic dynamic games 

One such indirect approach has been introduced in Ba~ar Let 0 denote the index set [0, 1 . . . .  , N - 1 }  and define the 
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N - 1  A 
B(n) = [B1 in), B2 in), B3 (n)] (12a) 

JI(N,M)=x'NQI(N)xN+ ~ [x'Ql(n)x. 
n = M  A . 

R(n)=  dlag [I, R 12In), Rt 3(n)] (12b) 

+ u'.u. + v'.R, z (n)vn + w'.R 13 (n)w.] (Ta) 
and with M( " ) ttcfincd rcct[r,,ix cb, b~. 

N - 1  

• ~2(N,M)=x'NQ2(N)xN+ ~, [x'nQ2(n)xn M ( n l =  Qi 01} + F'(n ).~ll, + I II. ol) + L'I (n)Ll (n} 
n = M  

+ L'2(n)Rt2(n)L2(n) 
+ u'.R 21 (n)u. + v'~v, + w'.R 23 (n)w.] (7b) 

+L'3(n)Rl3(n)La(n) (13) 
N - 1  

J3(N,M)=x~Q3(N)xN+ ~ [x'.Q3(n)x. M ( N ) = Q I ( N )  
n = M  

+u'.R31(n)un+v'.R32(n)v.+w'.w.] (7c) and 

with F(n) ~= A (n ) -  BI (n)L1 (n) - B 2 (n)L 2 i n ) -  B3(n)L3 (n). (14) 

R 1 2 ( ' ) > 0 ,  R13(" )>0,  R 2 3 ( ' ) > 0 ,  R 2 1 ( ' ) > 0 ,  The minimum (team) cost is 

R 3 1 ( ' ) > 0 ,  R 3 2 ( ' ) > 0 ,  Qi(')>O, i ~ : .  J~=x'oM(O)xo. (15) 

[ ]  
Each player has access to closed-loop perfect state 

information. If r/n denotes the set The solution of the optimal control problem (9), even 
though it is unique in feedback strategies, is not unique when 

r/n= {Xo, Xt ..... xn} (8) considered as an element of F 1 x F 2 x F 3. To determine the 
complete characterization of the solution set, let us first 

then we have u.=~l..(tt~), v,=~2,.(r/.), w~=73..(rt.) where ~,~.. denote the value of state xv} under (10) and as a function of 
is an appropriate measurable mapping denoting the strategy Xo by £v), i.e. £{.} satisfies the difference equation 
of : i  at stage n. We denote the space of such strategies for ~ i  
at stage n by F~.., denote the entire collection ~ + l = F ( n ) ~ . ,  Xo=Xo. (16) 
{Yl, o,?i.1 . . . . .  Y~.N-1} as 3% and adopt the convention of 
viewing ),j as a typical strategy of ~ i  in the game (which Furthermore, let 
covers the N -  1 stages) and as an element of F~ which is the 

_ A 
closed-loop strategy space of ~ i  constructed appropriately r / .={xo ,~ , . . . ,~ .} ,  (17) 
from F~,., n E 0. Furthermore, let us finally adopt the notation 
J~(7~,Y2,Y3) to denote the cost function of ~ i  in terms of the and introduce the subset t'~ of F~ by 
strategies of the players, obtained from ,Ti(N,O ) by setting u, 
=~x..('t.),v.=~'2..(~t.),w.=~3..(~t.), neO. l '~={~er~ :~ , . (# . )=~ ,~(~ . ) ,  n~0} (18) 

Now, in order to apply Theorem 1 to the dynamic game 
problem formulated above, we first assume that ~ 2  and ~ 3  
do not act at the last stage of the game, and ~ 3  does not act which is the set of all representations of the strategy ~{ on the 
at the next to the last stage of the game; in other words, optimal trajectory (16) [see e.g. Ba§ar (1980a) for elaboration 
B 2 ( N - 1 ) = 0 ,  B 3 ( N - 1 ) = 0  and B 3 ( N - 2 ) = 0 .  The reason for on this concept]. Then, we have: 

making such an assumption is [as discussed in Ba§ar and Lemma 2. Every solution of the minimization problem (9)is 
Selbuz (1979) for the specific two-person problem treated an element of the product space F l x F 2 × F3, and conversely 
there] that otherwise ~1  cannot  enforce his team solution on every triplet {)q e 1~1, ~'2 ~ 1"2, ~'3 e I'3} constitutes a solution to 
the other players, and .~2 cannot  enforce his desired solution (9). [ ]  
on ~3 .  If this assumption does not hold true, however, the 
problem is still tractable, but then one has to define a And this property of the solution immediately leads to the 
different" team problem (instead of mino,~.,~,,~,, ,. J 1 (~'1, ~'2, ~'3 ) ) in a following conclusion. 
way similar to the analysis of Section VI of Ba§ar 'and Selbuz 
(1979) for the two-player case; but we shall not pursue this Proposition 2. If 7~ is restricted to i~1, then S~(yl) 
extension here. introduced by (5a) becomes independent of Yl, and is given 

The related team problem. Since J 'I(N,0) is a strictly convex by 
functional of the control vectors of the players, the 
minimization problem S~ (~1) = i~2 x ~3. [ ]  

min min min J1 (~'1, ?2, Y3) (9) Derivation of a one-step-memory hierarchical strategy for 
-:~r, r2~r~ r~r~ ~1.  Any hierarchical equilibrium strategy for ~1  that  also 

satisfies the conditions of Theorem 1 will clearly have to be 
is well defined. Then, the following lemma readily follows an element of 1~. Hence, to obtain explicit results, we now 
from standard results in optimal control theory, confine ourselves to a specific class of elements in 1~ with a 

Lemma 1. The minimization problem (9) admits a unique fixed structure. In particular, we fix attention on the one-step- 
solution in feedback strategies, which is given by memory strategies 

y~.~(x.,x._ 1 ) =  - L ~ ( n ) x , , + l ' ~ l n ) [ x . - F ( n - l ) X , _ l ] ;  
y~ . ( x . )=-L i (n )x  , n~O ie.#" (10) 

. ~ D  f l s~  
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defined recursively by defined recursively by 

Z ,_{n~=Q,_{n~+ F'(n)Y2(n + l )F(n)+ L'l (n)R21(n)Ll (n) Z3(n)=Q3(n)+ F'(n)Z3(n + l )F(n)+ L'1(n)Ral (n)Ll (n) 

+ L'2(n)L2(n)+ L~(n)Rz3(n)La(n) (19) + L'2(n)Ra2(n)L2(n)+ L'a(n)La(n) (23) 

Z2(N ~=Q2(N ). E3(N)=Q3(N). 

A l l ' l :  an (r I x m)-matrix defined recursively by (as a function A2(. ) and Aa(-): (r 1 x m)- and (r 2 x m)-matrices defined 
of I P~ 01 + 1 ), PI (n + 2) . . . . .  PI (N - 1 )} ) recursively by 

A~ (n)= B'l(n)P'l (n + l )Al (n + l )F(n)- R2t (n)Lt (n) A2(n)= B'l (n)[P*'(n + l )A2(n + l )+ P'2(n + l )As(n + l )] 

+B'l(n)Z2(n+ 1)F(n) (20) x F(n)-gal  (n)Ll(n)+B'l(n)Za(n+ 1 )F(n); 

AI(N)=0.  A2(N)=0 (24a) 

Condition 1. There exists at least one matrix-valued A3(n)=B'2(n)[P~'(n+ 1)A2(n+ 1)+P~(n+  1)A3(n+ 1)]F(n) 
function sequence {PI (N - 1 ), P1 (N - 2) . . . . .  PI (1)} that 
satisfies recursively the matrix equations -Ra2(n)L2(n)+B'2(n)Z3(n+ l)F(n); A3(N)=0 

B'2(n - 1 )P'l (n)A1 (n)F(n - 1 )= (24b) 

-B '2(n- l )Z2(n)F(n-1)+Lz(n-1)  (21a) where {P*(1) . . . . .  PT'(N-1)} is the matrix sequence 
determined in Lemma 3. 

B'a(n-1)P'l(n)Al(n)F(n-1)= Condition 2. There exists at least one matrix-valued 

-B'3(n-1)Z2(n)F(n-1)+R23(n-1)L3(n-1 ) (21b) function {P2 (N-2 )  . . . . .  P2(1)} that satisfies recursively the 
linear matrix equation 

where Al(n ) is related to { P l ( n + l )  . . . . .  P I ( N - 1 ) }  through 
(20). [] B~ (n - 1 )[P~"(n)A2 (n) + P~ (n)A 3 (n)]F(n - 1 ) = 

Lemma 3. Let Condition 1 be satisfied and let {P*(N -B'3(n-1)X3(n)F(n-1)+L3(n-1 ). (25) 
-1)  . . . . .  P*(1)} denote one such sequence. Then, with y* e t 'l 
picked as [] 

7*.(x.,x._l)=[P~(n)--Ll(n)]x,--PT(n)F(n--1)x._l; Lemma 4. Let Condition 2 be satisfied and let {P*(N 
- 2 )  . . . . .  P~'(1)} denote one such sequence. Then, with ~*~i~2 

n ~ 0 - {0} (22) picked as 

Y*. o (Xo) = - L1 (0)Xo, y~,. (x., x._ t ) -- [P* (n) - L 2 (n)]x. - P~ (n)F (n - 1 )x._ t ; 

we have Sz(y*)=~'2 x r ': .  n=N-2 , . . . ,  1 

Y*, 0 (x0) = - L2 (0)x0, (26) 
Proof The fact that (7~,~'{) minimizes J2(Y~',Y2,Ta) over F 2 

x F 3 follows from Theorem 1 of Basar and Seibuz (1979) by we have Ra(y*;~,*)=l~3, and hence condition (i) of Theorem 1 
viewing ~2  and ~3  as a single player minimizing the cost holds. 
function J2 under the announced strategy y* of ~1, and by 
an appropriate decomposition of equation (21) of that Proof The fact that y~ minimizes Ja(y*,o:*,y3) over F 3 
reference into two linear matrix equations [which are (21a) follows from Theorem 1 of Basar and Selbuz (1979), this time 
and (21b) above]. Now, since J2(Y*,72,Y3) is a strictly convex by viewing .~1 and ~ 2  as a single player with the announced 
function of ~'2 and Ys when these strategies are restricted to strategies (22) and (25), and by an appropriate decomposition 
open-loop policies, it follows that the minimization problem of equation (20) of that reference into two coupled recursive 
min~ ~r min~:r~ J2(~'*, )'2, )'a) admits a unique open-loop equations [-which are (24a) and (24b)]. Because of the strict 

~t 2 
solutmn; furthermore, the pair (~2, ~'~) is a particular closed- convexity of J3(Y'~, Y*, 73), the subset of F3 that minimizes this 
loop representation of these open-loop strategies since it also quantity is the class of all representations of ~/a I on the 
minimizes J2(Y*, )'2, Y3) and the open-loop solution is unique, trajectory of (16), which is precisely r ' a - -a  result which 
Consequently, the set of all minimizing solutions of J20'~,)'2, follows from reasoning quite analogous to the one used in 
731 is comprised of all representations of (y~, V{), which is the proof of Lemma 3. Then, clearly, R 3 ( ] ~ * ; ) ' ~ ) = ~ 3 ,  which 
precisely the product set i"2 xl~3. Hence, $2(71")=1"2 xl~'3, further implies that ~'2(V~') is nonempty since {),*} × i~3 

=$2(~'*). Moreover, the latter part of condition (i) of 
The next step in the derivation now is to determine a Theorem 1 holds since J2(Y~,V*,¢) has a constant value for 

~'~'ei~2 such that Ra(,~,,2)~r~3 . To this end, we again a l l ~ ' ~ .  [] 
confine ourselves to a specific structure, namely to linear one- 
step-mcmory strategies in i" 2, which can be expressed as We now finally have 

Theorem 2. Under Conditions 1 and 2, ~ '  as defined by 
/ .  ,.Ix,,. \,, ~ )= - I. 2(n I.\,, + P , ln  }[.\,,--FI~I- I )x,,_ ~]: t77~ nrovides a hierarchical eouilibrium strate~v for ~1 in the 
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N - I  Remark 2. The solution presented in Theorem 2 is not the J 3 = x ~ +  ~, 2 2 2xn + w.. (28c) 
only hierarchical equilibrium solution that the three-person n=k 
linear-quadratic dynamic game admits, since we have 
restricted our investigation at the outset to a specifi c class of First, the solution of the minimization problem (9) can readily 
strategies for ~1, namely to linear one-step-memory strategies be computed (from Lemma 1), with the relevant quantities 
in 1~. To explore the possibilities for other (structurally tabulated in Table 1. It should be noted that as N - k  
different) equilibrium solutions, we could, for example, adopt becomes arbitrarily large, the feedback optimal team 
the following more general representation of (10) (with i= 1 ) strategies converge to the stationary values 
for ~1 

~,n(x.) = - 0.2637626xn 
?l..(x,,x._ t,x~_2) = - L l  (n)xn + Pl (n )[x~-F(n-1)x~- l] 

+P3(n)[x~_l -F(n-2)x~_2] ~,.(x~) = - 0.1318813x. 

Ya:,.(x.) = - 0.2637626x.. 
which incorporates a two-step memory. We could also allow 
the coefficient matrices P I ( ' )  and P3 ( ' )  to depend on the 
initial state of the game in which case equations of the form We then compute E2(')  and E3('), and record the 
(21) will be replaced by vector equations obtained by corresponding values in columns 1 and 2, respectively, of 
multiplying (21a) and (21b) from the right by £n_ 1,which Table 2. With these values at hand, we consider the difference 
follows directly from equation (A-9) of Ba§ar and Selbuz equation (20) and the relations (21a) and (21b) together, and 
(1979). Such structural forms will then clearly lead to less solve recursively for the unique AI( ' )  and ~ t ( ' )  whose 
stringent conditions than Conditions 1 and 2. For ~2, also, corresponding values are recorded in columns 3 and 4, 
we can adopt a more general class of elements in r z than the respectively, of Table 2. Finally, we solve for Az(. ), A3(. ) and 
one-step memory structure (25), which would lead to a further P2(" ), iteratively from (24) and (25), and again obtain unique 
relaxation of Condition 2. The corresponding values of the values, which are listed respectively in columns 5, 6 and 7 of 
cost functions (J1, J2 and J3), however, will be the same Table 2. 
under all these different representations, since all different Hence, this dynamic game problem admits a linear 
hierarchical equilibrium solutions that satisfy the sufficiency hierarchical equilibrium solution within the class of one-step- 
conditions of Theorem 1 are basically representations of the memory strategies for ~1 and ~2 ;  and as the number of 
team strategies (10). These optimal cost values will in fact be stages in the game becomes large, there is a rather fast 
J~ =x'oM(O)xo, J'~ =x~Z2(0)Xo, J$ =x~E3(0)x °. [] convergence to the stationary policies 

We now provide a specific example to illustrate Theorem 2 y*~(x.,x._ 1)=-43.59159xn +43.32783x,_ 1 
and the convergence properties of the hierarchical equilibrium 
solution as the number of stages in the game becomes y'~..(x.,x._l)=19.68395x.-19.95771x._l 
arbitrarily large. 

y*,.(x~) = 0.263763x~ 
4. A scalar example 

Let the state dynamics of an ( N -  k)-stage dynamic game to the nearest five decimal places. The corresponding optimal 
be described by cost values are 

XN = XN- 1 + UN- I " ]  J* = 1.26376X~ 

XN- 1 = XN- 2 + US- 2 + 2VN- 2 ~ (27) J* = 3.17300X~ 

Xn+l=x,+u.+2V.+w., n < N - 2  d*=2.16383xo 2. 

and the cost functions be given as 5. Concluding remarks 
Several extensions of the results of this paper are possible. 

N-~ Firstly, as discussed in Remark 2, Conditions 1 and 2 can be 
J ,=x~+ E 2 2 2+w2 (28a) x~ + u, +4v~ made less stringent by considering a more general class of 

~=k representations of the team strategies (10); in this context one 
N-~ may also include nonlinear representations of (10) by 

J2 = x~ + ~ 3x 2 + v~ + (1/4)w~ (28b) following the lines of Tolwinski (1981) in the two player case. 
n = k  

TABLE 1. SOLUTION OF THE TEAM PROBLEM (9) FOR THE SCALAR EXAMPLE 

n Lt(n) L2(n) L3(n) F(n) M(n) 

N . . . .  I 

N-I 0.5 - - 0.5 1.5 

N-2 0.375 0.1875 - 0.25 1.375 

N-3 0.2682926 0.1341463 0.2682926 0.1951219 1.2682926 
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TABLE 2. NUMERICAL VALUES OF THE RELEVANT QUANTITIES THAT DETERMINE THE EQUILIBRIUM STRATEGIES OF THE 
PLAYERS FOR THE SCALAR EXAMPLE 

E2(n) ~3(n) Al(n) Pl(n) A2(n) A3(n) P2(n) 

N I i 0 0 0 - 

N-I 3.25 2.25 0.5 -5.75 0.5 0 - 

N-2 3.2382812 2.140625 0.09375 -25.375006 -0.15625 -0.31250 15.137503 

N-3 3.1592801 2.1534799 0.0670731 -42.374769 0.2682926 0.5365852 19,576519 

N-4 3.1716804 2.1629518 0.0659898 -43.274732 0.2639593 0.5279186 19.934466 

N-5 3.1729143 2.1637717 0.0659427 -43.325063 0.2637711 0.5275422 19.956505 

N-6 3.1729984 2.1638253 0.0659407 -43.327685 0.2637629 0.5275258 1@.957646 

N-7 3.1730035 2.1638285 0.0659406 -43.327828 0.2637626 0.5275252 19.957687 

N-8 3.1730037 2.1638286 0.0659406 -43.327831 0.2637626 0.5275252 19.957711 

N-9 3.1730037 2.1638286 0.0659406 -43.327831 0.2637626 0.5275252 19.957711 

Secondly, both Definition 1 and the result of Theorem 1 can leave at Twente University of Technology, Enschede, 
readily be extended to general M-player dynamic games Netherlands, whose support he gratefully acknowledges. The 
which incorporate a linear hierarchy. A counterpart of paper was submitted while the author was with Marmara 
Theorem 1 in this general framework will lead to equilibrium Research Institute, Gebze, Kocaeli, Turkey. 
strategies with the following property: The equilibrium 
strategy of the player at the top of hierarchy (i.e. 9~1) forces 
the player at the second level of hierarchy (i.e. ~2)  to force ReJerences 
~3 to force g~4., . to force ~ M  to minimize collectively the Ba§ar, T. (1980a). Optimum coordination of linear 
cost functional of ~1. interconnected systems. Large Scale Systems 1, 17. 

As another possible extension, one can allow more than Ba~ar, T. (1980b). Memory strategies and a general theory for 
one player at each level of hierarchy, with the players at each Stackelberg games with partial dynamic information. 
such level playing according to the Nash equilibrium solution Proceedings of the Fourth International ConJerence on 
concept among themselves [i.e. a counterpart of the analysis Analysis and Optimization of Systems, Versailles, France. 
of Section V of Ba~ar and Selbuz (1979) is possible in the Ba~ar, T. (1981). Stochastic multi-criteria decision problems 
present framework]. Furthermore, since the general with multi levels of hierarchy. IEEE Trans. Aut. Control 
framework of Theorem 1 pertains to games in normal AC-26, 549. 
(strategic) form, it also covers stochastic games, and therefore Ba§ar, T. and G. J. Olsder (1980). Team-optimal closed-loop 
the sufficiency condition of Theorem 1 can also be applied to Stackelberg strategies in hierarchical control problems, 
stochastic dynamic games; one such application has in fact Automatica 16, 409. 
been presented in Ba~ar (1981). Finally, Theorem 1 may find Ba§ar, T. and H. Selbuz (1979). Closed-loop Stackelberg 
direct applications in three-player differential games ti.e. strategies with applications in the optimal control of 
dynamic games defined in continuous time) so as to obtain, multilevel systems. IEEE Trans Aut. Control AC-24, 166. 
for instance, the counterpart of the two-player results of Ba~ar Cruz, J. B. Jr. (1978). Leader-follower strategies for multilevel 
and Olsder (1980) and Papavassilopoulos and Cruz (1980) in systems. IEEE Trans Aut, Control AC-23, 244. 
case of three players with linear hierarchy. Medanic, J. (1977). Closed-loop Stackelberg strategies in 

Before concluding, we mention, as a word of caution for linear-quadratic problems. Proc. 1977 JACC, San 
the reader, that the sufficiency condition of Theorem 1 may Francisco, CA, pp. 1324-1329. 
not always be satisfied in three-player dynamic games; in Medanic, J. and D. Radojevic (1977). On the multilevel 
such cases the global minimum value of J1 cannot be realized Stackelberg strategies in linear quadratic systems. J. 
as the hierarchical (Stackelberg) equilibrium cost value of #1,  Optimi-. Theory .4pith 24, 485. 
and one has to derive new tighter bounds on Jr .  For a Papavassilopoulos, G. P. and J. B. Cruz, Jr. (1980). Sufficient 
discussion on this issue in two-player dynamic games we refer conditions for Stackelberg and Nash strategies with 
the reader to a recent article by Ba§ar (1980b). memory. J. Optimiz. Theory Appl. 31,233. 
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